
Lecture Notes on
Unbounded Arrays

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 6
September 9, 2010

1 Introduction

Most lectures so far had topics related to all three major categories of learn-
ing goals for the course: computational thinking, algorithms, and program-
ming. The same is true for this lecture. With respect to algorithms, we in-
troduce unbounded arrays and operations on them. Analyzing them requires
amortized analysis, a particular way to reason about sequences of operations
on data structures. We also briefly talk about data structure invariants and in-
terfaces, which are crucial computational thinking concepts. To implement
unbounded arrays, we will need structs, which provide a way to aggre-
gate data of different type, and pointers, which allow us to refer to structs
allocated in memory.

2 Unbounded Arrays

In the second homework assignment, you were asked to read in some files
such as the Collected Works of Shakespeare or the Scrabble Players Dictionary.
What kind of data structure do we want to use when we read the file? In
later parts of the assignment we want to look up words, perhaps sort them,
so it is natural to want to use an array of strings, each string constituting a
word. A problem is that before we start reading we don’t know how many
words there will be in the file so we cannot allocate an array of the right
size! One solution uses either a queue or a stack. We will discuss these in
the next two lectures. Another solution is to use an unbounded array. While

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.2

arrays are a language primitive, unbounded arrays are a data structure that
we need to implement.

Thinking about it abstractly, an unbounded array should be like an ar-
ray in the sense that we can get and set the value of an arbitrary element
via its index i. We should also be able to add a new element to the end of
the array, and delete an element from the end of the array.

We use the unbounded array by creating an empty one before reading a
file. Then we read words from the file, one by one, and add them to the end
of the unbounded array. Meanwhile we can count the number of elements
to know how many words we have read. We trust the data structure not to
run out of space unless we hit some hard memory limit, which is unlikely
for the kind of task we have in mind, given modern operating systems.
When we have read the whole file the words will be in the unbounded
array, in order, the first word at index 0, the second at index 1, etc.

The general implementation strategy is as follows. We maintain an ar-
ray of a fixed length limit and an internal index size which tracks how many
elements are actually in the array. When we add a new element we incre-
ment size , when we remove an element we decrement size . The tricky issue
is how to proceed when we are already at the limit and want to add another
element. At that point, we allocate a new array with a larger limit and copy
the elements we already have to the new array. For reasons we explain
later in this lecture, every time we need to enlarge the array we double its
size. Removing and element from the end is simple: we just decrement
size . There are some issues to consider if we want to shrink the array, but
this is optional.

3 Structs

So far we have seen the primitive types of int and bool. We have also used
the types string (for strings) and char (for ASCII characters). The only
compound type we have seen so far is t[] for an array of elements of type
t.

According to the above implementation sketch, an unbounded array
needs to track three forms of data: an integer limit , an integer size and an
array of strings. We can put these together in a so-called struct. We call it
struct ubarray. We refer to limit , size and strings as the fields of the struct.
It is declared with

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.3

struct ubarray {
int limit; /* limit > 0 */
int size; /* 0 <= size && size <= limit */
string[] strings; /* \length(strings) == limit */

};

The general form of a struct definition is

struct s {
t1 f1;
...
tn fn;

};

for a struct named s with field f1, . . . , fn of types t1, . . . , tn, respectively.
Struct names s occupy their own name space and cannot conflict with type
names, variable names, or function names. Similarly, field names f1, . . . , fn

do not conflict with struct names, type names, variable names, or function
names.

4 References and Pointers

In order to explain how members of a struct are accessed, we digress briefly
to introduce pointers, although we will use them in only a very limited form
in this lecture. C0 distinguishes between small types and large types. Small
types have values that can be stored in variables and passed to and from
functions. Large types can only be stored in memory. In order to access
them we pass references or pointers to them. Alternatively, we can think of
working with their address in memory, rather than the values themselves.

Which types are small and large so far? It seems pretty clear that int,
bool, and char are explicitly designed to be small. The natural size of a
value of type int on recent architectures is 32 or 64, although in previous
generations of processors it was 8 or 16. In C0 we fix them to be 32. There
are only two booleans, so we might expect them to be 1 bit. The processor
architecture, however, has a natural word size which is handled most effi-
ciently, so they may actually be implemented to take more space. Similarly,
ASCII character values of type char should take 7 or 8 bits, although in
reality an implementation might allocate more space for them.

The type of arrays is an interesting case. We might expect t[] to be a
large type, since each array takes a fixed, but unbounded amount of space.

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.4

But we have been passing them as arguments and assigning them to vari-
ables without any problems. The reason is that a value of type t[] is ac-
tually a reference to an array that is stored in memory. Such a reference fits
within the word size of the machine, since addresses are a basic type that
the machine can manipulate. On most recent architectures, an address will
take either 32 or 64 bits, depending on the configuration of the compiler
and machine. The current environment in use for this class uses 64 bits,
although there is no effective way to tell the difference from within a pro-
gram.

In summary, arrays with elements of type t and length n are allocated
in memory, with alloc_array(t,n). Such an allocation returns a reference
to the array. When two variables of type t[] are the same reference we say
that they alias. As a programmer, it is important to be aware of this because
assignment to an array variable does not copy the contents of the array, but
only assigns references. For example, after the operations

int[] A = alloc_array(int,5);
int[] B = alloc_array(int,7);
A[2] = 37;
B = A;
B[2] = 11;

A and B alias, and we have A[2] == 11 and also \length(B) == 5. In fact,
the allocation of B is redundant, and we could just as well have written

int[] A = alloc_array(int,5);
int[] B;
A[2] = 37;
B = A;
B[2] = 11;

Besides arrays, strings are also manipulated by reference and therefore
string is a small type. In contrast, structs are large types. This means that
they are allocated in memory and can not be stored in variables or passed to
functions. Instead of references, as for arrays, we use explicit pointers when
passing them to or from functions or assigning them to variables. In fact,
because struct s is a large type it is an error to try to pass it to a function
or directly declare a variable of such a type.

In general, we write t* for a pointer to a value of type t in memory.
In this lecture we only use it in the form struct s*, that is, a pointer to a
struct in memory. Structs (and other values) are allocated in memory using

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.5

the form alloc(t) for a type t. This allocation returns a pointer to the new
memory location, and therefore has type t*.

If we have a pointer p of type struct s* we refer to the field f of the
struct using the notation p->f. To write to memory we use it on the left-
hand side of an assignment, to read from memory with use it as an expres-
sion.

We will see these language constructs in action in the next section where
we describe the implementation of unbounded arrays.

5 Implementing Unbounded Arrays

As sketched above, an unbounded arrays tracks a limit, a current size, and
an underlying (bounded) array.

struct ubarray {
int limit; /* limit > 0 */
int size; /* 0 <= size && size <= limit */
string[] strings; /* \length(strings) == limit */

};

There are some data structure invariants that we maintain, although they
may be temporarily violated as the elements of the structure are manipu-
lated at a low level. Generally, when we pass a pointer to the data structure
or assign it to a variable we expect these invariants to hold. C0, however,
has no intrinsic support for ensuring these invariants. Instead, our method
is to define a function to test them and then verify adherence to the in-
variants in contracts as well as loop invariants and assertions. Here, the
function is_uba serves that purpose.

As a general idiom, when we use structs, we define a new type to stand
for a pointer to the struct. This is because most of the time we work with
pointers to structs rather than structs themselves. Here we call this new
type uba.

typedef struct ubarray* uba;

bool is_uba (uba L)
//@requires L->limit == \length(L->strings);
{

return L->limit > 0 && 0 <= L->size && L->size <= L->limit;
}

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.6

Note that consistency between the L->limit and the length of L->strings
can only be tested in a precondition (or explicit @assert) since \length can
only appear in annotations.

To create a new unbounded array, we allocate a struct ubarray and
an array of a supplied initial limit.

uba uba_new (int initial_limit)
//@requires 1 <= initial_limit;
//@ensures is_uba(\result);
{ assert(1 <= initial_limit,

"unbounded array must be of initial limit 1 or more");
{ uba L = alloc(struct ubarray);
string[] Ls = alloc_array(string, initial_limit);
L->limit = initial_limit;
L->strings = Ls;
return L;

}
}

We ascertain in the postcondition that the result adheres to the data struc-
ture invariants. Since we are implementing a general-purpose data struc-
ture, we do not trust that clients will necessarily adhere to the contracts. We
therefore check explicitly that the initial limit is strictly positive and signal
an error if it is not. This is a common use of explicit assert statements.
They will always be checked at runtime, while @assert annotations will
not: they are only verified when dynamic checking of contracts is enabled.

Getting and setting an element of an unbounded array is straightfor-
ward. However, we do have to verify that the array access is in bounds.
This is stricter than checking that it is within the allocated array (below
limit), because everything beyond the current size should be considered
to be undefined. These array elements have not yet been added to the array,
so reading or writing them is meaningless. We show only the operation of
writing to an unbounded array, uba_set.

void uba_set(uba L, int index, string s)
//@requires is_uba(L);
//@requires 0 <= index && index < L->size;
{ assert (0 <= index && index < L->size,

"unbounded array index out of bounds");
L->strings[index] = s;

}

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.7

More interesting is the operation of adding an element to the end of an
unbounded array. For that we need a function to resize an unbounded ar-
ray. This function takes an unbounded array L and a new limit new_limit.
It is required that the new limit is strictly greater than the current size, to
make sure we have enough room to preserve all current elements and one
more for the next one to add. We also stipulate that the size does not change
by stating L->size == \old(L->size) in the postcondition.

void uba_resize(uba L, int new_limit)
//@requires is_uba(L);
//@requires new_limit > L->size;
//@ensures is_uba(L);
//@ensures L->limit == new_limit && L->size == \old(L->size);
//@ensures L->size < L->limit;
{

string[] Ks = alloc_array(string, new_limit);
int i;
for (i = 0; i < L->size; i++)
Ks[i] = L->strings[i];

// L->size remains unchanged
L->limit = new_limit;
L->strings = Ks;

}

Finally we are ready to write the function that adds an element to the
end of an unbounded array. We first check whether there is room for an-
other element and, if not, double the size of the underlying array of strings.
The contract just states that the array is valid before and after the operation.

void addend(uba L, string s)
//@requires is_uba(L);
//@ensures is_uba(L);
{

if (L->size == L->limit) uba_resize(L, 2*L->limit);
//@assert L->size < L->limit;
L->strings[L->size] = s;
L->size++;

}

We discuss the function that removes an element from an array later in
this lecture.

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.8

6 Amortized Analysis

It is easy to see that reading from or writing to an unbounded array at a
given index is a constant-time operation. However, adding an element to
an array is not. Most of the time it takes constant time O(1), but when we
have run out of space it take times O(size) because we have to copy the old
elements to the new underlying array. On the other hand, it doesn’t seem
to happen very often. Can we characterize this situation more precisely?
This is the subject of amortized analysis. Calling the operation to add a new
element to an unbounded array an insert, we claim:

The cost of n insert operations into an unbounded array is O(n).

How do we prove that? Let’s say a simple insert takes c steps. Because
we are only concerned with asymptotic analysis we can count this as 1
operation. Similarly, we count the act of copying one element from one
array to another as 1 operation. Now performing a sequence of inserts,
starting with an empty array of, say, size 4 looks as follows.

call op’s size limit
addend(L,"a") 1 1 4
addend(L,"b") 1 2 4
addend(L,"c") 1 3 4
addend(L,"d") 1 4 4
addend(L,"e") 5 5 8
addend(L,"f") 1 6 8
addend(L,"g") 1 7 8
addend(L,"h") 1 8 8
addend(L,"i") 9 9 16

We have taken 4 extra operations when inserting "e" in order to copy "a"
through "d". Overall, we have performed 21 operations for inserting 9
elements. Would that be O(n) by the time we had inserted n elements?

The idea is to redistribute the cost of the expensive calls and “charge”
them to the cheap calls. Another way to look at it is that during a cheap
call we put a constant number of operations “in the bank”, saving them to
withdraw later when we come to an expensive call. If we never need more
operations than we have saved in the bank, we have constant amortized
time per call to addend.

We call the operations we save tokens. So a token is like an operation we
could have performed and remained in constant time but didn’t. Therefore

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.9

we can perform one operation per saved token later without violating the
linear-time bound for the whole sequence of operations.

In the sequence above, let’s save one token for every inexpensive call,
and withdraw them when the expensive call arises.

call op’s
saved
tokens

spent
tokens

total
tokens size limit

addend(L,"a") 1 1 0 1 1 4
addend(L,"b") 1 1 0 2 2 4
addend(L,"c") 1 1 0 3 3 4
addend(L,"d") 1 1 0 4 4 4
addend(L,"e") 5 1 −4 1 5 8
addend(L,"f") 1 1 0 2 6 8
addend(L,"g") 1 1 0 3 7 8
addend(L,"h") 1 1 0 4 8 8
addend(L,"i") 9 1 −8 −3 9 16

We see that we spend 4 tokens when adding "e" to copy "a" through "d",
and we add a new one for the insertion of "e" itself. Unfortunately we incur
a deficit when inserting "i": we did not save enough to show constant
amortized time. The argument was too simplistic.

The crucial property we need is that there k ≥ 0 tokens left just after
have we have doubled the size of the array. We think of this as an invariant
of the computation: it should always be true, no matter how many strings
we insert.

To prove this invariant, we must show that it holds the first time we
have to double the size of the array, and that it is preserved by the opera-
tions.

We when create the array, we give it some initial limit limit0. We run
out of space, once we have inserted limit0 tokens, arriving at the following
situation.

“a”  “b”  “c”  “d” 

limit0 

size $ $  $ $  $ $  $ $ 

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.10

We have accrued 2 ∗ limit0 tokens. We have to spend limit0 of them to copy
the elements so far, keeping limit0 > 0 in the bank.

“a”  “b”  “c”  “d” 

limit0 

“a”  “b”  “c”  “d” 

limit0  2*limit0 

$ $ $ $ $ $ $ $ 

$ $ $ $ 

size 

size 

So the invariant holds the first time we double the size.
Now assume we have just doubled the size of the array and the invari-

ant holds, that is, we have k ≥ 0 tokens, and 2 ∗ size = limit .

“a”  “b”  “c”  “d” 

size 

limit = 2*size 

k*$ 

After size more inserts we are at limit and added another 2 ∗ size = limit
tokens.

“a”  “b”  “c”  “d”  “e”  “f”  “g”  “h” 

size  limit = 2*size 

k*$ $$  $$  $$  $$ 

On the next insert we double the size of the array and copy limit array
elements, spending limit tokens.

“a”  “b”  “c”  “d”  “e”  “f”  “g”  “h” 

size  limit = 2*size 

k*$ 

“a”  “b”  “c”  “d”  “e”  “f”  “g”  “h” 

size  limit = 2*size 

k*$ 

$$ $$ $$ $$ 

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.11

Our bank account is reduced back to k tokens, but we know k ≥ 0, preserv-
ing our invariant.

Since we only save a constant number of tokens on each operation, in
addition to the constant time the operation itself takes, we never perform
more operations than a constant times the number of operations. So our
claim above is true: any sequence of n operations performs at most O(n)
steps. We also say that the insert operation has constant amortized time.

This completes the argument. In the example above we get the follow-
ing numbers.

call op’s
saved
tokens

spent
tokens

total
tokens size limit

addend(L,"a") 1 2 0 2 1 4
addend(L,"b") 1 2 0 4 2 4
addend(L,"c") 1 2 0 6 3 4
addend(L,"d") 1 2 0 8 4 4
addend(L,"e") 5 2 −4 6 5 8
addend(L,"f") 1 2 0 8 6 8
addend(L,"g") 1 2 0 10 7 8
addend(L,"h") 1 2 0 12 8 8
addend(L,"i") 9 2 −8 6 9 16

The number of tokens will now never fall below 6. If we add another 8
elements, we will also put 2 ∗ 8 = 16 tokens into the bank. We will need to
spend these to copy the 16 elements already in the array and we are back
down to 6.

Tokens are a conceptual tool in our analysis, but they don’t need to be
implemented. The fact that there are always 0 or more tokens during any
sequence of operations is an invariant of the data structure, although not
quite in the same way as discussed before because it tracks sequences of
operations rather than the internal state of the structure. In fact, it would
be possible to add a new field to the representation of the array that would
count tokens and raise an exception if it becomes negative. That would
alert us to some kind of mistake, either in our amortized analysis or in our
program. This would, however, incur a runtime overhead even when asser-
tions are not checked, so tokens are rarely, if ever, explicitly implemented.

This kind of analysis is important to avoid serious programming mis-
takes. For example, let’s say we decide to increase the size of the array
only by 1 whenever we run out of space. The token scheme above does
not work, because we cannot accumulate enough tokens before we need to

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.12

copy the array again. And, indeed, after we hit limit the first time, the next
sequence of n inserts takes O(n2) operations, because we copy the array on
each step until we reach 2 ∗ limit .

7 Deleting Elements

Deleting elements from the end of the array is simple, and does not change
our amortized analysis, unless we want to shrink the size of the array.

A first idea might be to simply cut the array in half whenever size
reaches half the size of the array. However, this cannot work in constant
amortized time. The example demonstrating that is an alternating sequence
of n inserts and n deletes precisely when we are at the limit of the array. In
that case the total cost of the 2 ∗ n operations will be O(n2).

To avoid this problem we cut the size of the array in half only when the
number of elements in it reaches limit/4. The amortized analysis requires
one token to be put aside for any delete operation. Then if size = limit/2
just after we doubled the size of the array and have no tokens, putting aside
one token on every delete means that we have size/2 = limit/4 tokens
when we arrive at a size of limit/4. Again, we have just enough tokens to
copy the limit/4 elements to the new, smaller array of size limit/2.

The code for remend (“remove from end”):

string remend(uba L)
//@requires is_uba(L);
//@requires L->size > 0; /* always check dynamically */
//@ensures is_uba(L);
{ string s;

assert (L->size > 0, "cannot remove element from empty unbounded array");
L->size--;
s = L->strings[L->size];
L->strings[L->size] = ""; /* avoids a space leak */
if (4*L->size <= L->limit && L->limit > 1) uba_resize(L, L->limit/2);
return s;

}

One side remark about the assignment L->strings[L->size] = "". In
C0, we do not have any explicit memory management. Storage will be re-
claimed and used for future allocation when the garbage collector can see
that data are no longer accessible from the program. If we remove an el-
ement from an unbounded array, but keep the element in the array, the

LECTURE NOTES SEPTEMBER 9, 2010



Unbounded Arrays L6.13

garbage collector can not determine that we will not access it again, be-
cause the reason is rather subtle and lies in the bounds check for uba_get.
In order to allow the garbage collector to free the space occupied by the
strings stored in the array, we therefore overwrite the array element with
the empty string "", which is the default element for strings.

8 Interfaces

So far we have shown how to implement and analyze unbounded arrays.
From a programming perspective, clients of this data structure should not
have to know the exact details of the implementation. It is an important
computational thinking principle to hide implementation details from the
clients and just present an interface with the operations on the data struc-
ture. We also note down the complexity of the operations, since they are an
important guide to potential clients.

struct ubarray;
typedef struct ubarray* uba;

uba uba_new(int initial_limit); /* O(1) */
int uba_size(uba L); /* O(1) */
string uba_get(uba L, int index); /* O(1) */
void uba_set(uba L, int index, string s); /* O(1) */
void addend(uba L, string s); /* O(1), amortized */
string remend(uba L); /* O(1), amortized */

Unfortunately, C (and, by association, C0) does not provide a way to en-
force that clients do not incorrectly exploit details of the implementation of
a data structure. Higher-level languages such as Java or ML have interfaces
and data abstraction as one of their explicit design goals. In this course, the
use of interfaces is a matter of programming discipline. As we discuss fur-
ther data structures we generally focus on the interface first, before writing
any code. This is because the interface often guides the selection of an im-
plementation technique and the individual functions.

LECTURE NOTES SEPTEMBER 9, 2010


	Introduction
	Unbounded Arrays
	Structs
	References and Pointers
	Implementing Unbounded Arrays
	Amortized Analysis
	Deleting Elements
	Interfaces

