Lecture Notes on
Data Structure Invariants

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 12
October 5, 2010

1 Introduction

In this lecture we will highlight data structure invariants, one of the impor-
tant and recurring themes in algorithm design and implementation. We use
a simple text buffer as an example and implement it using doubly-linked
lists.

Before we launch into the particular data structures we need, let’s re-
view the role of contracts that we have seen so far. The preconditions for
a function establish and document the correct way of calling it, while the
postconditions promise what will hold when the function returns. Together,
they allow us to abstract away from exactly how a function computes, say-
ing only what it computes. This allows us, for example, to substitute a
different implementation of a function with confidence: as long as we con-
tinue to satisfy our side of the contract, that is, the postconditions, the client
code should continue to work correctly if it adhered to its obligation to sat-
isfy the preconditions. So pre- and post-conditions are function interfaces
that go beyond the simple type information that is always checked by a
compiler. In order to verify the correctness of our implementation we use
the loop invariants to localize reasoning within a function.

Data structures, such stacks or queues or associative arrays have a simi-
lar overall structure. The interface to the data structure declares some types
and functions to create and manipulate elements of these types. Just as the
internals of a function should be hidden from a client, this implementation
of the data structure should not be available to the client so that we can
improve or substitute the implementation without breaking clients of the

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.2

data structure. The pre- and post-conditions of the functions in the interface
play the role of the pre- and post-conditions of stand-alone functions that
we explored at the beginning of the course. Reasoning about the internals
of a data structure implementation requires an analogue of loop invariants.
The qualitative difference is that the computation of interest does not take
place inside a single loop, but is spread out across many calls to functions
in the interface to the data structure. For example, we might create a queue
and then have many calls inserting and deleting elements. The properties
of the data structure that must hold across these calls at the interface are
called data structure invariants. Usually, we assume that they hold when a
function in the interface is called, and have to ensure that they still hold
when the function returns.

The data structure invariants play multiple roles, each of which we dis-
cuss with our example in some more detail. The first is simply to ensure
a minimal consistency so that the stored information is meaningful. For
example, we specified that the front and back pointers of a queue are not
NULL. The second is to ensure the correct operation of the algorithms on the
data structure. For example, in a hash table, all data elements stored in the
chain at index 7 must have the property that the hash value of their key is
1. Otherwise, we could not find the data element at all. The third role is
to make sure that the operations on the data structure have the promised
asymptotic complexity or efficiency. For example, in unbounded arrays we
want to make sure that after resizing of the array only half of the array is
full, so that our adding and deleting elements has constant amortized time.

At this point it should become clear how central data structure invari-
ants are. They are critical in all phases: design, analysis, and implementa-
tion of data structures. In CO, there are no new primitives to express and
enforce data structure invariants. Instead, we write functions to check them
and then use these in the pre- and post-conditions of the functions at the
interface to the data structure. Moreover, we will often need to use them in
internal functions or loops in order to ascertain that they are preserved by
the data structure implementation.

Now on to our example.

2 A Text Buffer

A text buffer is a simple abstract type that supports the kind of operations
that have to be performed in a text editor. Conceptually, we have a se-
quence of characters and a point. We insert characters into the buffer, and

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.3

delete characters from the buffer at the point.
For example, the state of the buffer might be:

a e b x j w

1

point

To insert a character ¢, we place it just before the point. In the example
above, we would obtain:

a e b c x j w

1

point

Deleting a character is just the reverse: it deletes the character just before
the point. So if we apply delete in the situation after inserting c, we are
back to the first diagram.

We can also move the point forward or backward. After a move forward
by one character in the above picture we have

a e b cx jJ w

1

point

If we now move backward we are at the same situation as before.
If the point is before the first character, as in the following diagram,

a e b cxz j w

T

point

moving backward will have no effect, and trying to delete a character will
yield an error. Similarly, if the point is to the right of the last character,

a e b cx j w

,

point

then moving forward will have no effect.

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.4

3 Text Buffer Interface

Here is the text buffer interface.

typedef struct tbuf* tbuf;

tbuf tbuf_new(); /* create new edit buffer */

bool tbuf_empty(tbuf B); /* is it empty? */

void insert_char(tbuf B, char c); /* insert character after point */
bool at_min(tbuf B); /* is point at minimum buffer position */
void delete_char(tbuf B); /* delete character before point */

void forward_chars(tbuf B, int n); /* move forward n chars */
void backward_chars(tbuf B, int n); /* move backward n chars */
string tbuf_to_string(tbuf B); /* convert edit buffer to string */

We haven’t discussed the last function which we added for testing pur-
poses. It converts the text buffer to a string.

This interface defines the type tbuf, which is provided by the imple-
mentation and used, abstractly, by the client. Unfortunately, C and CO do
not provide a way to enforce this abstraction. Our approximation is to de-
fine tbuf as a pointer to a struct tbuf, where the struct is not yet defined.
It will be provided by the implementation of the interface.

We now discuss a few implementation ideas for text buffers and analyze
their complexity on a buffer of size n.

4 Text Buffers as Arrays

This first idea is to implement a buffer as an array, possibly an unbounded
array so it can grow as characters are inserted. Moving the point forward or
backward are constant-time operations (O(1)). However, inserting or delet-
ing a character is an O(n) operation since we have to move the characters
after the point to avoid any gaps. On the other hand, the representation is
quite compact. A buffer for editing a large file takes about almost exactly
the amount of space as a file itself.

The space efficiency of the representation makes the idea interesting for
real editor implementation such as Emacs or vim. In Emacs, a buffer is
represented as an array with a gap.! Insertion is into the gap and deletion
is from the gap, which are constant time operations. These constant time

!See, for example, http://www.gnu.org/s/emacs/manual/html_node/elisp/
Buffer-Internals.html#Buffer-Internals

LECTURE NOTES OCTOBER 5, 2010

http://www.gnu.org/s/emacs/manual/html_node/elisp/Buffer-Internals.html#Buffer-Internals
http://www.gnu.org/s/emacs/manual/html_node/elisp/Buffer-Internals.html#Buffer-Internals

Data Structure Invariants L12.5

operations allow us to amortize the cost of moving large segments of the
buffer when that gap has to be moved, or a new gap has to be created.

5 Text Buffers as Two Stacks

Another possibility is to use an idea you explored in the first midterm. We
can represent the text buffer via two stacks, one containing the characters
to the left of point and one containing the characters to the right of point.
For example, the buffer

a e b x j w

1
point
would be
b x
j
La| w
left right

where the top of the stack is displayed at the top.
To insert a character we just push it onto the left stack. For example,
inserting c into the buffer displayed above yields

‘gw.&

left right

Deleting a character from the buffer just pops it from the left stack, leading
us back to the first display.

Moving backward and forward is also straightforward. Moving for-
ward one character just pops an element from the right stack and pushes

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.6

into onto the left stack. In the buffer just above:

left right

Moving backward one character just does the opposite, popping a charac-
ter from the left stack to and pushing it onto the right stack. In the above
situation we just return to the previously displayed buffer.

All of these operations are constant time, if pushing and popping from
stacks are constant time. However, moving by m characters forward or
backward is not requires O(m) operations. Moreover, if we implement
stacks via linked lists, this representation is not particularly space efficient
since we need a pointer for every character. In C, a character just takes 1
byte, while a pointer on modern systems is either 4 or 8 bytes. Thus, when
editing a large file, the space requirement would be a 4 or 8 times as much
as the size of the file, which is not acceptable. Therefore, the gap array
representation seems preferable.

6 Doubly-Linked Lists

When files get very large, even the gap array representation may have un-
acceptable time overhead, needing to move large sections of the file in an
array. A possible way out would be to represent the buffer as a linked list of
arrays, each representing a segment of the file smaller than some maximum
size. The character sequence making up the buffer is then the concatena-
tion of the all the segments, an operation that hopefully would never have
to be performed explicitly. However, we may move forward or backward
across the segment boundaries, so an ordinary linked list representation as
we have used for stacks and queues is awkward. It is more convenient to
have a doubly-linked list, where each node points to its predecessor node as
well as to its successor node.

For simplicity, we study doubly-linked lists not using buffer segments,
but text buffers directly. So each node of a doubly-linked list contains a

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.7

character as well as pointers to the previous and next nodes called prev
and next, respectively.

typedef struct dllx dll;

struct dll {
char data; /* data item */
dll prev; /* prev node, where p->prev->next == p, if valid */
dll next; /* next node, where p->next->prev == p, if valid */

};

It is important to remember that this declaration is internal to the imple-
mentation of text buffers and should not be referenced by client code.

A text buffer struct tbuf contains a pointer to the first node called
min, a pointer to a node just beyond the end of the buffer called max and the
point itself. Since there is no natural place between two nodes that point
could refer to, we could either have a dummy node at point whose char-
acter datum we ignore, or we can just arbitrarily decide to call the node
before or after point. We use this last idea and have point be the node just
preceding the insertion point in the buffer.

struct tbuf {

dll min; /* min buffer position, only min->next valid */
dll point; /* min <= point < max */

dll max; /* max buffer position, only max->prev valid */
int size; /* number of characters */

};

This means that point could be min (if the point is before the first character
in the buffer), or just below max (if the point is to the right of the last charac-
ter in the buffer), but never equal to max. The following diagram illustrates
a tbuf, ignoring the size field.

min point max
— 1 ; | |

XXXX

o
2

XXXX X
prev | XXXX
next XXXX

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.8

This buffer holds characters z, b, 7, w, with the point between b and r. The
fields marked XXXX in the picture hold data that are irrelevant. They should
never be used. The previous and next pointers are drawn as if they point
to the middle of the struct before or after the current node, but the CO lan-
guage has no such interior pointers. In the implementation they point to
the beginning of the struct, but this is awkward to represent faithfully with
lines and arrows. So, for example, the prev pointer of the node labeled r is
equal to point which is equal to the next pointer of the node labeled z.

7 Text Buffer Invariants

For any data structure, before we launch into the implementation of the
functions acting on it, we should make our invariants precise. As usual,
we express them as a boolean function that tests, as far as possible, that
the invariants are satisfied. Occasionally, some invariants are difficult or
impossible to check, in which case we write the conditions in comments.

We develop the invariants incrementally, keeping the picture in mind.
Recall that

typedef struct tbuf* tbuf;

which means that a value of type tbuf could be NULL. This would not be a
valid text buffer, since even the empty buffer has min and max nodes and
a point. We check these conditions at the beginning and return false if
they are not satisfied. This allows us to assume that the are not NULL in the
remainder of the function.

bool is_tbuf (tbuf B) {
if (B == NULL) return false; /x (1) *x/
if (B->min == NULL) return false; /* (2) */
if (B->point == NULL) return false; /* (3) */
if (B->max == NULL) return false; /* (4) *x/

}

We number our invariants so we can refer to them when we reason about
them. The next part of the checking function will traverse the doubly-
linked list from left to right, always checking that the prev and next pointer
line up correctly. We stop the iteration when the pointer p has reached max.

{ d11 p = B->min;

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.9

while (p != B->max)
//@loop_invariant p !'= NULL; /* (6) */
{
if (p->next == NULL) return false; /x (8) *x/
if (p->next->prev != p) return false; /* (9) */
p = p->next;

if (p->prev->next != p) return false; /* (11), redundant w.

}

return true;

3

Invariants (5), (7), and (10) are still missing from this fragment. Invariant (6)
is an internal loop invariant; it is a precondition for calculating, for exam-
ple, p->next without running the risk of p being NULL. Invariant (8) ensures
that the next pointer is never NULL, except possibly on max, which cannot
be the case while inside the loop due to the exit test. Invariant (9) verifies
that if we follow the next pointer and then return via the prev pointer, we
end up again at p. We then advance p by following the next pointer. We
now check that following the prev pointer and then next we return back
to the same place, although this is redundant since we already check the
corresponding condition at (9). Some redundancies in these checks are ac-
ceptable, since they are not written for efficiency, but for correctness. They
should not be called except in annotations, which are only used when their
dynamic checking is explicitly enabled. In the current CO compiler, this is
accomplished with the -d flag.

The invariant function so far does not check that point is somewhere
between min (inclusively) and max (exclusively). We can incorporate this
by creating a flag point_ok which is initialized to false, and set to true if
p equals point during the traversal of the text buffer. We then return true
only if point_ok is true after the iteration.

bool is_tbuf (tbuf B) {
if (B == NULL) return false; /* (1) =/
if (B->min == NULL) return false; /* (2) *x/

(9) =/

if (B->point == NULL) return false; /* (3), redundant with (7ab) */

if (B->max == NULL) return false; /*x (4) *x/
{ d11 p = B->min;

bool point_ok = false; // new

while (p != B->max)
//@loop_invariant p !'= NULL; /* (6) */
{

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.10

if (p == B->point) point_ok = true; /* (7a) */ // new
if (p->next == NULL) return false; /x (8) *x/
if (p->next->prev != p) return false; /* (9) */
P = p->next;
if (p->prev->next != p) return false; /* (11), redundant w. (9) */
}
return point_ok; /
}
}

*

(7Tb) */ // modified

We make one more addition: we track the size of the text buffer with a
counter and compare it to the stored size field.

bool is_tbuf (tbuf B) {
if (B == NULL) return false; /x (1) *x/
if (B->min == NULL) return false; /* (2) x/
if (B->point == NULL) return false; /* (3), redundant w. (7ab) */
if (B->max == NULL) return false; /* (4) x/
{ d11 p = B->min;
bool point_ok = false;

int i = 0; // new
while (p != B->max)
//@loop_invariant p != NULL; /* (6) *x/
{
if (p == B->point) point_ok = true; /x (7a) */
if (p->next == NULL) return false; /*x (8) %/

if (p->next->prev != p) return false; /* (9) */
P = p—>next;

i++; /* (10a) */ // new
if (p->prev->next != p) return false; /* (11), redundant w. (9) */
}
return point_ok && B->size == i-1; /* (7Tb) and (10b) */ // modified

+
}

The astute reader will notice that invariant (5) is still missing. Whenever
we write functions (including those testing data structure invariants), we
need to check that the functions terminate. The function above could get
into an infinite loop if the end of the doubly-linked list is hooked up with
the beginning. A student suggested that we can avoid this situation by
setting the prev pointer of min to NULL, because even if we had a cycle,

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.11

condition (9) would then be violated at the node that pointed to min. If the
cycle completed to a later node, again condition (9) would have be violated
at some earlier point.

So here is our final function

bool is_tbuf (tbuf B) {
if (B == NULL) return false; /*x (1) */
if (B->min == NULL) return false; /x (2) x/
if (B->point == NULL) return false; /* (3), redundant w. (7ab) */
if (B->max == NULL) return false; /* (4) *x/
if (B->min->prev != NULL) return false; /* (5), to avoid possible cycles */
{ d11 p = B->min;
bool point_ok = false;

int i = 0;
while (p != B->max)
//@loop_invariant p !'= NULL; /* (6) *x/
{
if (p == B->point) point_ok = true; /* (Ta) x/
if (p->next == NULL) return false; /*x (8) %/

if (p->next->prev != p) return false; /* (9) */
P = p—>next;

i++; /* (10a) */
if (p->prev->next != p) return false; /* (11), redundant w. (9) */
}
return point_ok && B->size == i-1; /* (7b) and (10b) */

}
}

8 Creating a Text Buffer

The code to create a text buffer is straightforward, but we note on each line
the invariant that is being established.

tbuf tbuf_new()

//Q@ensures is_tbuf (\result);

//Qensures tbuf_empty(\result);

{
tbuf B = alloc(struct tbuf); /* establishes (1) */
dll min = alloc(struct dll);
dll max = alloc(struct dll);

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants L12.12

min->prev = NULL; /* establishes (5) */
min->next = max; /* ests (8) *x/
max->prev = min; /* ests (9) on min */
/* max->next is irrelevant */

B->min = min; /* ests (2) */

B->point = min; /* ests (3) and (7a) */
B->max = max; /* ests (4) */

B->size = 0; /* ests (10b) x*/

return B;

We can easily check that a buffer is empty in more than one way. For
example:

bool tbuf_empty(tbuf B)
//@requires is_tbuf (B);
{
return B->size == 0; /* or: B->min->next == B->max; */

}

Note that calculating B->size cannot fail because B is not NULL by invariant
(1) and the precondition that B is a valid text buffer.

9 Inserting a Character

In order to insert a new character into a text buffer, we have to allocate a
new node reroute a number of pointers. Two strategies help us to obtain
correct code. One is to draw a box-and-pointer diagram to make sure we
understand how the nodes are connected. A second one is to explicitly refer
to the invariants and (a) make sure that all pointer that are dereferenced are
known to be not null, and (b) that the assignments reestablish the invari-
ants. We show here diagrams before and after the insertion of the character
c after b. We ignore some of the parts of the earlier diagram that are not

LECTURE NOTES OCTOBER 5, 2010

Data Structure Invariants

L12.13

relevant to an insertion, simply leaving them blank.

min

point

max

l%

prev

next

After insertion, we have the following situation.

min point max
T T]
!
-
X b c r w
prev L EL N LR EE
next csband ===

void insert_char (tbuf B, char c)
//@requires is_tbuf (B);
//@ensures is_tbuf (B);
{

dll q = alloc(struct d11);

q->data = c;

g->prev = B->point; /* ok by (1) */

g->next = B->point->next; /* ok by (3) x/

q->next->prev = q; /* ok by (8) and (7); ests (9) */

q->prev->next = q; /* ok by (8); ests (11) */

B->point = q; /* ests (3) and (7) */

B->size++; /* ests (10) */
}

When checking this code, we have to make sure that all pointers we deref-
erence are not null; the corresponding reason is given by reference to the
data structure invariants in the is_tbuf function. We also want to make

LECTURE NOTES

OCTOBER 5, 2010

Data Structure Invariants L12.14

sure that the invariants are reestablished appropriately, so we annotate each
line with the invariant that is explicitly established there. Please make sure
to read the code above line by line and understand how it relates to the
stated invariants.

It is also important to make sure that we update the pointers in the right
order. Doing it in the wrong order might destroy a value we still need, or
we may accidentally copy the wrong pointer value into a struct. Generally
speaking, when we create a new node, it is safest to update its pointers
first, because that does not overwrite any existing meaningful pointers. Af-
ter that, we change the existing pointers in the auxiliary structure (here in
the doubly-linked list), and finally we change the information in the main
struct tracking the abstract type (here struct tbuf).

You are invited to read the complete implementation of the interface
presented in this lecture in the file tbuf.cO available on the course web

pages.

LECTURE NOTES OCTOBER 5, 2010

http://www.cs.cmu.edu/~fp/courses/15122-f10/lectures/12-dsinvs/tbuf.c0

	Introduction
	A Text Buffer
	Text Buffer Interface
	Text Buffers as Arrays
	Text Buffers as Two Stacks
	Doubly-Linked Lists
	Text Buffer Invariants
	Creating a Text Buffer
	Inserting a Character

