
Midterm II Exam

15-122 Principles of Imperative Computation
Frank Pfenning, Tom Cortina, William Lovas

November 4, 2010

Name: Andrew ID: Section:

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 80 minutes to complete the exam.

• There are 4 problems.

• Read each problem carefully before attempting to solve it.

• Consider writing out programs on scratch paper first.

Red/black

Ropes trees BDDs Heapsort

Prob 1 Prob 2 Prob 3 Prob 4 Total

Score

Max 40 40 30 40 150

Grader

1



1 Ropes (40 pts)

In C0 and C, strings are typically represented as arrays of characters. This allows constant-time
access of a character at an arbitrary position, but it also has some disadvantages. In particular, con-
catenating two strings (function string_join) is an expensive operation since we have to create a
new character array and copy the two given strings into the new array character by character.

Task 1 (10 pts). What is the asymptotic complexity of the following loop as a function of n?
Assume that string_fromint is a constant-time operation.

string string_fromarray(int[] A, int n)
//@requires 0 <= n && n < \length(A);
{ string s = "["; int i;
for (i = 0; i < n; i++)

//@loop_invariant 0 <= i && i <= n;
s = string_join(s, string_fromint(A[i]));

return string_join(s, "]");
}

The data structure of ropes attempts to improve efficiency of concatenation by representing
strings as binary trees, where the leaves contain ordinary strings and the intermediate nodes repre-
sent concatenations. For example, the string "totally efficient" might look as follows (among
many other possibilities):

“totally ef” 

“fici”  “ent” 

Note that ordinary strings are only stored at the leaves. Assuming no rebalancing, concatenation
of ropes is a constant-time operation.

2



Task 2 (10 pts). Assuming no rebalancing, show the final result of concatenating the rope above
first on the left with "[" then on the right with "]" to form a rope for the string "[totally efficient]".

Task 3 (10 pts). Describe what additional information you might store in the nodes so that ac-
cessing the ith character in a string of length n represented by a rope is O(log(n)) if the rope is
balanced.

3



Task 4 (10 pts). Carefully describe the invariant for your data structure. You do not need to write
code to check it, but your description should be precise and detailed enough that it would be clear
how to write the code.

4



2 Red/Black Trees (40 pts)

The transformation below, from the tree on the left to the tree on the right, we called a double
rotation. It was used in rebalancing after insertion into a red/black tree. We assume keys are
integers and x, y, and z are keys for the three nodes shown explicitly.

Task 1 (10 pts). Show that the name double rotation is justified by drawing an intermediate tree
between the two, so that each step is a single rotation. Try to obey the data structure invariants as
much as possible, but see Task 3.

z 

y 

x 

x 

y 

T1 
z 

red node 

black node 

T2  T3 

T4 

T1  T2  T3  T4 

Task 2 (20 pts). Assume that first tree satisfies all red/black tree invariants except for the color
invariant at y (whose parent is also red). Also assume that the first tree has no restriction on keys
at the root (interval (−∞, +∞)) and black height h.

Fill in the following table, indicating the bounding intervals and the black height for each
subtree.

Tree Interval Black Height

T1

T2

T3

T4

5



Task 3 (10 pts). Under the same assumptions as in Task 2, explain which red/black tree invariants
hold for the tree you drew in the middle, and which ones are violated and where.

6



3 Binary Decision Diagrams (30 pts)

Task 1 (10 pts). Draw a binary decision tree (not a BDD) for the boolean function with arguments
x1, x2, and x3 that returns true if and only if exactly two of the inputs are true. It should test the
variables in the given order.

7



Task 2 (20 pts). Draw a reduced ordered binary decision diagram (ROBDD) for the boolean func-
tion above, again using the given variable ordering. Show intermediate steps in the reduction
from the tree to the ROBDD for partial credit in case your final result is not quite correct.

8



4 Heapsort (40 pts)

We can use the invariant behind heaps in order to implement an in-place sorting algorithm for
arrays called heapsort. For simplicity, we use max heaps, which satisfy:

Max Heap Ordering Invariant: Each node except for the root must be less or equal to
its parent.

This guarantees that a maximal element is at the root of the heap, rather than a minimal one as we
did in lecture.

The algorithm proceeds in two phases. In phase one we build up a heap spanning the whole
array, in phase two we successively delete the maximum element from the heap and move it the
end.

Here is our implementation, written compactly, with only pre- and post-conditions, but no
loop invariants or assertions. Note that we only sort the range A[1, n), ignoring A[0].

void heapsort(int[] A, int n)
//@requires 1 <= n && n <= \length(A);
//@ensures is_sorted(A, 1, n);
{ int i;
for (i = 2; i < n; i++) {

sift_up(A, i, i+1);
}
for (i = n-1; 2 <= i; i--) {

swap(A, 1, i);
sift_down(A, 1, i);

}
}

The functions sift_up and sift_down are like the functions we wrote in lecture, except that they
take an array as a first argument and what we called H->next (the index right after the last element
currently in the heap) as the third argument. The pre- and post-conditions for both functions are
given below.

Your main task will be to enrich this code with invariants and assertions. You should assume
the following functions:

bool is_heap(int[] A, int n);
bool is_heap_except_up(int[] A, int i, int n);
bool is_heap_except_down(int[] A, int i, int n);
bool is_sorted(int[] A, int lower, int upper);

with the following interpretation:

is_heap(A, n) means that the range A[1, n) satisfies the heap invariant.

is_heap_except_up(A, i, n) means that the range A[1, n) satisfies the heap invariant except
that A[i] (which must be in the heap) may be greater than its parent.

is_heap_except_down(A, i, n) means that the range A[1, n) satisfies the heap invariant except
that A[i] (which must be in the heap) may be less than one or both of its children.

9



is_sorted(A, lower, upper) means that the range A[lower , upper) is sorted in increasing order.

Here are the pre- and post-conditions for the sift_up and sift_down functions that are called
from heapsort.

void sift_up(int[] A, int i, int n)
//@requires is_heap_except_up(A, i, n);
//@ensures is_heap(A, n);
;

void sift_down(int[] A, int i, int n)
//@requires is_heap_except_down(A, i, n);
//@ensures is_heap(A, n);
;

Task 1 (25 pts). The following is a correct implementation of heapsort, which sorts the range
A[1, n) in place. Fill in the strongest correct annotations in the given places, using only the func-
tions is_heap, is_heap_except_up, is_heap_except_down and is_sorted. To give you a head
start we have included loop index invariants already.

void heapsort(int[] A, int n)
//@requires 1 <= n && n <= \length(A);
//@ensures is_sorted(A, 1, n);
{ int i;
for (i = 2; i < n; i++)

//@loop_invariant 2 <= i && i <= n;

//@loop_invariant ________________________________________________________________
{

//@assert ______________________________________________________________________
sift_up(A, i, i+1);
}

//@assert __________________________________________________________________________
for (i = n-1; 2 <= i; i--)

//@loop_invariant 1 <= i && i <= n-1;

//@loop_invariant ________________________________________________________________
{
swap(A, 1, i);

//@assert ______________________________________________________________________
sift_down(A, 1, i);

}
}

10



Task 2 (15 pts). Analyze the asymptotic complexity of our version of heapsort.

11


