
15-122: Principles of Imperative Computation,

Fall 2010

Assignment 8: The C0VM

William Lovas (wlovas@cs) Tom Cortina (tcortina@cs)
Frank Pfenning (fp@cs)

Out: Wednesday, April 13, 2011
Due: Friday, April 29, 2011 (11:59pm)

1 Overview

In this assignment you will implement a virtual machine for C0, the C0VM. It has
been influenced by the Java VirtualMachine (JVM) and the LLVM, a low-level virtual
machine for compiler backends. We kept its definition much simpler than the JVM,
following the design of C0. Bytecode verification, one of the cornerstones of the JVM
design, fell victim to this simplification so in this way the machine bears a closer
resemblance to the LLVM. Nevertheless, it is a fully functional design and should be
able to execute arbitrary C0 code, although not all C0 standard libraries are presently
supported.

The purpose of this assignment is to give you practice in writing C programs in
the kind of application where C is indeed often used in practice. C is appropriate
here because a virtual machine has to perform some low-level data and memory
manipulation that is difficult to make simultaneously efficient and safe in a higher-
level language. It should also help you gain a deeper understanding how C0 (and,
by extension, C) programs are executed. We also hope that actual implementations
may be useful for further instances of this course, because virtual machines are easy
to instrument for debugging purposes, allowing tracing, single-stepping, setting
breakpoints, call-counting, etc.

The C0VM is defined in stages, and we have test programs which exercise only
part of the specification. We strongly recommend that you construct your implemen-
tation following these stages and debug and test each stage before moving on to the
next. Each part has its own challenges, but each part should be relatively small and
self-contained.

This document describes the structure of the C0VM first, then the instruction set
(bytecodes) for the C0VM, and then the file format for a C0 program in bytecode

1



form. After this, you will see the tasks you need to perform, step by step. Read this
document very carefully as you prepare to do your work.

2 The Structure of the C0VM

Compiled code to be executed by the C0 virtual machine is represented in a byte
code format, typically stored in a file ending in extension .bc0 which we call the
bytecode file. This file contains numerical and string constants as well as byte code
for the functions defined in the C0 source. The precise form of this file is specified in
Section 4.

2.1 Types

C0 has so-called small types int, bool, char, string, t[], and t*. Values of these
types can be passed to or from functions and held in variables. We arrange that in the
C0VM, values of all of these types have the same size, namely 32 bits (4 bytes), which
simplifies handlingof the various internaldata structures of theC0VM. Nevertheless,
we think of the small types as constituting two classes: the primitive types int, bool,
and char and the reference types string, t[] and t*. All primitive types are conflated
in the C0VM and denoted by w32, indicating a 32 bit word. Values of primitive types
are denoted by x, i, or n. We also conflate all reference types and write *. Values of
reference type are denoted by a for address.

In addition C0 has large types struct s which cannot be passed directly, but
must be stored in memory. When the C0VM executes a program, it, too, stores
values of large type on its heap and refers to them by their address. Calculations of
how to access struct fields are performed statically by the compiler, which computes
proper offsets for each access. In addition, arrays (referenced by values of type t[]),
memory cells (referenced by values of type t*) and strings (referenced by values of
type string) are stored on the heap.

2.2 Runtime Data Areas

TheC0VMdefines several data areas that are usedduring the execution of a program.

2.2.1 The Program Counter

The program counter pc holds the address of the program instruction currently being
executed. Unless a nonlocal transfer of control occurs (goto, conditional branch,
function call or return) it is incremented by the number of bytes in the current
instruction before the next instruction is fetched and interpreted.

2



2.2.2 The Call Stack

The C0VM has a call stack consisting of frames, each one containing local variables,
a local operand stack, and a return address. The call stack grows when a function is
called and shrinkswhen a function returns, deallocating the frame during the return.

2.2.3 The Operand Stack

The C0VM is a stack machine, similar in design to the JVM. This means arithmetic
operations and other instructions pop their operands fromanoperand stack andpush
their the result back onto the operand stack. This is in contrast with register machines
where instructions such as arithmetic operations act on a finite set of registers.

2.2.4 The Heap

At runtime, the C0 heap contains C0 strings, C0 arrays (t[]) and C0 cells (t*). C0
arrays have to store size information so that dynamic array bounds checks can be
performed. It is recommended to use the C heap to implement the C0 heap, that is,
allocate strings, arrays, and cells directly using calls to malloc and calloc or their
null-checking variants xmalloc and xcalloc as defined earlier in this course.

Since C0 is designed as a garbage-collected language, you will not be able to free
space allocated on behalf of C0 unless you arewilling to implement (or use) a garbage
collector. We do not view this as a memory leak of the C0VM implementation. On
the other hand, temporary data structures required for the C0VM’s own operation
should be properly freed.

2.2.5 Constant Pools

Numerical constants requiring more than 8 bits and all string constants occurring in
the program will be allocated in constant pools, called the integer pool and the string
pool. They never change during program execution.

2.2.6 Function Pools

Functions, either C0 functions defined in a source file or library functions, are kept in
pools called the function pool and thenative pool, respectively. Functions in the function
pool are stored with their bytecode instructions, while functions in the native pool
store an index into a table of C function pointers that the C0VM implementation can
dereference and invoke.

2.3 Frames

A frame stores data and partial results during the execution of a function body. It
holds a return address, which should be the next instruction in the calling function,

3



an array of local variables denoted byV[0], . . . ,V[num vars−1], and an operand stack
for computing expression values. At any point during the execution there is a current
frame as well as a calling frame, where the latter is restored when a function returns to
its caller.

Since all values of small type occupy 4 bytes, the data structures implementing
frames, including the array of local variables and the operand stack, can allocate 4
bytes for each data value, whether of primitive type or reference type. From the
C perspective, things are simplest if these are of type void*. This requires us to
be able to cast ints to pointers and vice versa without loss of information; the C99
standard leaves this behavior implementation-defined, but the Andrew version of
GCC implements such lossless casts providedwepass it theflag -m32when compiling
the C0VM implementation.

The main function we have provided (see the file c0vm_main.c) performs some
simple tests to verify that casts between t* and int do not lose information. If any
of these tests fail, C0VM will abort with an appropriate error message.

2.4 Runtime Errors

In order to fully capture the behavior of C0 programs, youmust correctly issue errors
for things like dereferencing NULL, indexing into an array outside of its bounds, and
dividing by zero. Check the C0 Language Reference for details on what kinds of
errors you must handle, and then use the following provided functions to issue
appropriate error messages:

void c0_memory_error(char *err); // for memory-related errors

void c0_division_error(char *err); // for division-related errors

For unexpected situations that arisewhile executing bytecode, situationswhich could
indicate a bug in your VM, you may use the standard C library functions abort or
assert to abort your program. See Section 5.2 for more details on this distinction.

3 Instruction Set

We group the instructions by type, in order of increasing complexity from the imple-
mentation point of view. We recommend implementing them in order and aborting
with an appropriate message when an unimplemented instruction is encountered.

3.1 Stack Manipulation

There are three instructions for direct stack manipulation without regard to types.

0x59 dup S, v -> S, v, v

0x57 pop S, v -> S

0x5F swap S, v1, v2 -> S, v2, v1

4



3.2 Arithmetic Instructions

Arithmetic operations in C0 are defined using modular arithmetic based on a two’s
complement signed representation. This does not match your implementation lan-
guage (C) very well, where the result of signed arithmetic overflow is undefined.
On the other hand, unsigned arithmetic overflow is defined to be modular arithmetic.
We therefore recommend casting int as unsigned int, performunsigned arithmetic,
then casting back. This does not relieve all manual burden to guarantee C0 com-
pliance, but it goes a long way. We recommend a careful reading of the arithmetic
operations in the C0 Language Reference.

For this implementation strategy to be correct, it is important to verify that our
C environment does indeed use a two’s complement representation and that the
C type of int has 32 bits. The provided main function (see the file c0vm_main.c)
performs these checks before starting the abstract machine and aborts the execution
if necessary.

In the instruction table below (and for subsequent tables), we use w32 for the type
of primitive values and * for the type of reference values. Each line has an opcode
in hex notation, followed by the operation mnemonic, followed by the effect of the
operation, first on the stack, then any other effect.

0x60 iadd S, x:w32, y:w32 -> S, x+y:w32

0x7E iand S, x:w32, y:w32 -> S, x&y:w32

0x6C idiv S, x:w32, y:w32 -> S, x/y:w32

0x68 imul S, x:w32, y:w32 -> S, x*y:w32

0x80 ior S, x:w32, y:w32 -> S, x|y:w32

0x70 irem S, x:w32, y:w32 -> S, x%y:w32

0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32

0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32

0x64 isub S, x:w32, y:w32 -> S, x-y:w32

0x82 ixor S, x:w32, y:w32 -> S, xˆy:w32

idiv and irem can raise exceptions (use the provided function c0_division_error
to generate a message), and ishl and ishr need to mask their second argument
to 5 bits to bridge the gap between the undefined behavior in C and the specified
behavior in C0. Please refer to the C0 language specification for important details.

We have omitted negation -x, which the compiler can simulate with 0-x, and
bitwise negation ˜x, which the compiler can simluate with xˆ(-1).

3.3 Local Variables

We can move data generically between local variables and the stack, because both
primitive types and reference types occupy 4 bytes. The instruction operand <i> is
one byte following the opcode 0x15 or 0x36 in the instruction stream. Because this
is the only way to access a local variable, each function can have at most 256 local
variables, which includes the function arguments.

5

http://www.cs.cmu.edu/~fp/courses/15122-f10/misc/c0-reference.pdf


0x15 vload <i> S -> S, v (v = V[i])

0x36 vstore <i> S, v -> S (V[i] = v)

3.4 Constants

We can push constants onto the operand stack. There are three different forms: (1)
a constant null which is directly coded into the instruction, (2) a small signed (byte-
sized) constant <b> which is an instruction operand and must be sign-extended to
32 bits, and (3) a constant stored in the constant pool. For the latter, we distinguish
constants of primitive type from those of reference type because they are stored in
different pools.

The two constant loading instructions ildc and aldc take two unsigned bytes as
operands, which must be combined into an unsigned integer index for the appropri-
ate constant pool. The integer pool stores the constants directly, and the index given
to ildc is an index into the integerpool. The string pool is one large array of character
strings, each terminated by ’\0’. The index given to aldc indicates the position of
the first character; its address is therefore of type char* in C and understood by C as
a string.

0x01 aconst_null S -> S, null:*

0x10 bipush <b> S -> S, x:w32 (x = (w32)b, signed)

0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])

0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])

3.5 Control Flow

Each instruction implicitly increments the program counter by the number of bytes
making up the instruction. Control flow instructions change this by jumping to
another instructionunder certain conditions. The addressing is relative to the address
of the branch instruction. The offset is a signed 16 bit integer that is given as a two-
byte operand to the instruction. It must be signed so we can branch backwards
in the program. Note that if_cmpeq and if_cmpne can be used to compare either
integers or pointers for equality or inequality, whereas the other comparisons only
make sense on integers. The nop “no-op” instruction has no effect.

0x00 nop S -> S

0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)

0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)

0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)

0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)

0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)

0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)

6



0xA7 goto <o1,o2> S -> S (pc = pc + (o1<<8|o2))

3.6 Function Calls and Returns

Function calls come in two forms: invoking a C0 function defined in the same
bytecode file and invoking a library function defined in C. In either case, generic
arguments v1 through vn are passed on the operand stack and consumed. TheC0VM
implementation must guarantee that the result v is pushed onto the stack when the
function returns. For functions returning void, a dummy value is pushed onto the
operand stack to provide a uniform interface to functions.

Function information is stored in the function pool or native pool, both of which
are addressed by the instruction operand consisting of two bytes, which must be
reconstituted into an unsigned 16 bit quantity indexing into the appropriate pool.

0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v

(function_pool[c1<<8|c2] = g, g(v1,...,vn) = v)

0xB0 return ., v -> . (return v to caller)

When invoking a C0 function (instruction invokestatic) we have to preserve
the program counter pc as a return address, the current local variable array V and
the current operand stack S. This is the information in a frame which is pushed onto
a global call stack. Then we set the pc to the beginning of the code for the called
function g, allocate a new array of local variables, and initialize it with the function
arguments from the old operand stack. We also create a new empty operand stack
for use in the called function.

When processing a return instruction we restore the pc, the local variable array
V and the operand stack S from the last frame on the call stack. We also need to
arrange that the return value is popped from the current operand stack and pushed
onto the operand stack of the frame we return to. Some temporary data structures
may need to be deallocated at this point.

The main function always has index 0 in the function pool and takes 0 arguments.
After reading the file, setting up appropriate data structures, etc., your C0VM imple-
mentation should start executing byte code at the beginning of this function and at
the end print the final value.

In this assignment, you should use two instances of the abstract data type of
stacks, one holding frames (the call stack) the other holding operands (the operand
stack).1 Each of them is used just using pushes and pops, as the stack interface

1There are a number of other plausible implementation paths for the two stacks. One possibility
is inspired by the system call stack for languages such as C. In this strategy there is one global array
storing return addresses, local variables, and (in the case of the C0VM) also an area to use as the
operand stack. This implementation would not use our abstract datatype of stacks, but implement the
stack as an array with a so-called stack pointer which is the current top of the stack. Of course, it is
not really treated exactly like an abstract stack, because the access to local variables violates the pure
stack discipline. Another possibility is to have a single operand stack, shared throughout the execution,

7



dictates. Remember, your stacks or arrays will have to share data of different types,
namely primitive types and reference types.

A reasonable mapping to C implementation types would be int for primitive
types and void* for reference types, implementing respectively the types w32 and *
in the description of the instructions. We will ask you to compile your code in 32-bit
mode under gcc (with flag -m32) so that values of type int and void* have the same
size, namely 32 bits. A preamble in the provided main function verifies that this
is indeed the case. This allows you to store all C0VM values of small type as type
void* and cast them to the appropriate type for the operations you need to perform
on them and to cast the result back when finished.

3.7 Native Function Calls

Native function calls have the same form as C0 function calls, but the two-byte
instruction argument indexes into the native pool, rather than the function pool.

0xB7 invokenative <c1,c2> S, v1, v2, ..., vn -> S, v

The value native_pool[c1<<8|c2] is an index i into a separate runtime structure,
the native_function_table. From there you retrieve the address of a function g
which has type

void* (*g)(void**);

The type void** should be read as an array of pointers of type void*, which indicates
generic data. It also returns a value of generic type. In order to call this function you
have to construct an array of length n and store arguments v1 through vn at indices
0 through n − 1, and then invoke the function g on this array. The result has to be
pushed back onto the operand stack.

Native function calls do not therefore involve explicitly managed stack frames.
Of course, your abstract machine implementation is using the system stack, so when
you call the library function, the library function also uses the system stack, rather
than any stack managed explicitly by your virtual machine.

The mapping between native library functions and their indices into the native
function table is given as a series of NATIVE_*macros in the file c0vm_natives.h.

3.8 Memory Allocation, Load, and Store

Besides function calls, the trickiest aspect of the C0VM implementation is the man-
agement of the C0 runtime heap. There are two basic options. One is to allocate on
the C runtime heap (that is available to your C0VM implementation as it runs) one
very large array and perform C0 allocations inside this array. The type of references
would then be int, values denoting array indices. Alternatively, you can satisfy each

rather than local ones for each frame. This is possible because the C0VM specification requires that
when a function returns, its operand stack must be empty.

8



C0 allocation request separately by allocating a sufficient amount of space on the C
runtime heap, using C pointers to implement C0VM references. The latter option is
advantageous for the purpose of calling native functions because the C runtime heap
is shared between the running C0VM implementation and the C0 bytecode program
that it executes. In either case, the implementation of allocation must take care to
initialize all memory requested by C0 to all zeros, as required by the semantics.

0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)

The new <s> instruction allocates memory for holding data of size s, and returns
the address of that memory. Here s is an unsigned byte, expressing the memory size
in bytes. The data size is computed statically by the C0 compiler. For example, the
C0 expression alloc(int)would translate to new 4, while alloc(struct b)would
translate to new n, where n is the size of a struct b in memory in bytes, which is
always known at compile time.

0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated)

0xBE arraylength S, a:* -> S, n:w32 (n = \length(a))

The newarray <s> instruction allocates memory for an array, each of whose
elements has size s. The number n of elements to allocate is passed on the stack since
it cannot in general be known at compile time. Unlike C, in C0 array bounds must be
checked on accesses to the array, so an array must store its length. It can be retrieved
with the arraylength instruction, which is passed an argument on the operand stack
which must be a reference to an array.

The layout for arrays must be specified precisely so that native library functions
can reliably convert between C0 and the native format. The first 4 bytes contain the
number of elements, the next 4 bytes contain the size of each element, followed by
the “raw” array, whose size is n ∗ s bytes. See the text file C_IDIOMS.txt for the C
idiom to achieve this kind of layout.

Accessing memory is decomposed into address arithmetic and loading from or
storing to a computed address. Address arithmetic comes in two forms. We can
add a field offset to access a field of a struct, written below as a + f where f , the
instruction operand, is an unsigned one-byte quantity. The offset is computed by the
C0 compiler. It does not need to be checked, but amust not be null.

0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset)

0x63 aadds S, a:*, i:w32 -> S, (a+s*i):*

(a != NULL, 0 <= i < \length(a))

The second form aadds computes the address of an array element. The operand
a on the stack must be the address of an array, and the operand i must be a valid
index for this array. The C0VMmust issue an error message and abort if this is not a
valid index, which can be determined from the stored array length; use the provided

9



function c0vm_memory_error to issue this error. We then use the size s stored with
the array to compute the address of the ith element. In your implementation you
will have to be careful to account for additional 8 bytes stored for each array in order
to obtain the correct address. Note that one aadds instruction is necessary for every
array access, even if we access the element at index 0.

Once we have calculated an address that holds a value of small type (either a
primitive type or a reference type), we can load it from memory with the mload
instruction, or store something at the given location with the mstore instruction. The
values loaded or stored are generic, which means 4 bytes wide.

0x2E mload S, a:* -> S, v (v = *a, a != NULL)

0x4F mstore S, a:*, v -> S (*a = v, a != NULL)

For character arrays, we also need to be able to load an individual byte and cast it as
a value of C0VM type w32, zero-extending it. Zero-extensionworks here because the
original C0 type of such a value must have been charwhose range is limited to 7 bits.
This is done by the cmload instruction; cmstore performs the opposite, masking the
given value of type w32 to 7 bits.

0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)

0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)

4 Bytecode File Format

The bytecode file, usually with extension .bc0, is produced by the cc0 compiler
when invoked with the -b or --bytecode flag. In order to allow you to easily read
bytecode, and also write your own bytecode, the binary file is coded in hexadecimal
form, where two-digit bytes are separated by whitespace. In addition, the file may
contain comments starting with ‘#’ and extending to the end of the line.

We describe the format as pseudo-structs, where we use the types described
below. For multi-byte types, each byte is given separately by two hexadecimal
digits, with the most significant byte first.

u4 - 4 byte unsigned integer

u2 - 2 byte unsigned integer

u1 - 1 byte unsigned integer

i4 - 4 byte signed (two’s complement) integer

fi - struct function_info, defined below

ni - struct native_info, defined below

The size of some arrays is variable, depending on earlier fields. These are only arrays
conceptually, of course. In the file, all the information is just stored as sequences of
bytes separated by whitespace.

10



struct bc0_file {

u4 magic; # magic number, always 0xc0c0ffee

u2 version; # version number, currently 2

u2 int_count; # number of integer constants

i4 int_pool[int_count]; # integer constants

u2 string_count; # number of characters in string pool

u1 string_pool[string_count]; # adjacent ’\0’-terminated strings

u2 function_count; # number of functions

fi function_pool[function_count]; # function info

u2 native_count; # number of native (library) functions

ni native_pool[native_count]; # native function info

};

struct function_info {

u2 num_args; # number of arguments, V[0..num_args)

u2 num_vars; # number of variables, V[0..num_vars)

u2 code_length; # number of bytes of bytecode

u1 code[code_length]; # bytecode

};

struct native_info {

u2 num_args; # number of arguments, V[0..num_args)

u2 function_table_index; # index into table of library functions

};

We are providing code that reads bytecode files and marshals the information
into similar internal C structures.

5 Programming Tasks and Coding Advice

There are many complexities in implementing a virtual machine, especially one that
is rich enough so it can execute all of C0! Fortunately, some of the complexities (such
as parsing the bytecode file) are taken care of by code we are providing, but others
remain. You will complete the code in c0vm.c.

The following are suggested strategies to help you work effectively throughout
this project.

5.1 Incremental Implementation

Implement a subset of the instruction set and test your C0VM implementation on
code that only uses the subset. Generate some test cases using cc0 -b from simple
C0 sources, or use some of the supplied examples that use limited instructions. You
should recognize instructions that are valid but not in your subset and give a “not

11



yet implemented” message and returning rather than aborting in the same way as
for other errors. Test one stage thoroughly before moving on. After extending the
machine, first make sure the old, simple examples still run correctly, a process called
regression testing. The stages follow our discussion of the instruction set:

Task 1 (10 pts) Initialize the following variables correctly in the execute function in
the c0vm.c file: callStack, main_fn, V, S, P, pc.

Handin: No handin is required for this task. It will be included in all of your
subsequent handins.

Task 2 (25 pts) [3.1,3.2] Add code to handle arithmetic instructions, plus bipush,
swap, and return. (Note: The return instruction need only simulate returning
from main for now.) C0 programs with only a main function returning an
expression made of small constants can be used to test these capabilities, e.g.,

int main() {

return 15 * ((1<<10) - 24) + 122;

}

Handin: When you complete this task and have tested thoroughly, you should
hand in this version of the C0VM under the name c0vm-arithmetic.c. You
may also hand in any bytecode (.bc0) files you used to test your code.

Task 3 (10 pts) [3.3,3.4] Add code to deal with local variables and constants. C0
source files containing straight-line code using variables and large constants
can be used to test these capabilities, e.g.,:

int main() {

int x = 15122;

int y = x * x;

return y;

}

Handin: When you complete this task and have tested thoroughly, you should
hand in this version of the C0VM under the name c0vm-locals.c. You may
also hand in any bytecode (.bc0) files you used to test your code.

Task 4 (25 pts) [3.5] Add code to handle goto and conditionals (e.g., if_icmpge).
Now you should be able to execute loops, as in

int main () {

int i; int sum = 0;

for (i = 15; i <= 122; i++)

sum += i;

return sum;

}

12



Handin: When you complete this task and have tested thoroughly, you should
hand in this version of the C0VM under the name c0vm-control.c. You may
also hand in any bytecode (.bc0) files you used to test your code.

Task 5 (20 pts) [3.6,3.7] Add function calls (invokestatic, invokenative). This
requires managing a call stack in some form, and you will need to revisit
return. You may want to focus on ordinary C0 function calls (invokestatic,
return) before moving on to native function calls (invokenative).

Now your main function can call auxiliary functions, such as the ubiquitous
recursive factorial function, and library functions that print output:

int factorial(int n) {

if (n == 0) return 1;

else return n * factorial(n-1);

}

int main () {

printint(factorial(15));

println(" is the factorial of 15");

return 0;

}

Handin: When you complete this task and have tested thoroughly, you should
hand in this version of the C0VM under the name c0vm-functions.c. Youmay
also hand in any bytecode (.bc0) files you used to test your code.

Task 6 (10 pts) [3.8] Add the C0 heap, where arrays and structs are allocated. After
this, you should be able to run any C0 code, except code that uses unsupported
libraries such as -l img.

Handin: When you complete this task and have tested thoroughly, you should
hand in this version of the C0VM under the name c0vm-memory.c. You may
also hand in any bytecode (.bc0) files you used to test your code.

5.2 Assertions

Ideally, we would establish invariants of the bytecode that we read from a file to
make sure no runtime memory or type error occurs. In the JVM this is referred to
as bytecode verification. Unfortunately, the current bytecode format does not provide
enough information to do this. Even if it did, it would be a major project in itself. So
you have to fall back on dynamic checks. These checks come in two categories:

1. The usual checks on the runtime structure of your own code, verifying that
pointers are not null, etc.

2. Checks that the C0 bytecode you have read in behaves properly.

13



Some of the checks in the second category are mandated:

(a) The C0 program must not dereference the C0 null pointer or perform pointer
arithmetic on it.

(b) The C0 program must not access memory outside the bounds of a C0 array.

(c) The C0 program must not perform illegal integer division (division by 0, or the
min int divided by -1).

If you encounter these runtime errors, you should produce error messages using the
provided functions void c0_memory_error(char *err) (formemory-related errors)
and void c0_division_error(char *err) (for division-related errors). The error
messages for these should make it clear that this is a runtime error in the bytecode
you are executing and not a bug in your machine.

The first category of checks should in principle be redundant. For example, the
cc0 compiler should never produce a bytecode file that jumps to an invalid address.
Nevertheless, bytecode written by hand or a bug in the cc0 compiler or your VM
could lead to such issues. Since C does not guarantee detection of such incorrect
jumps or accesses, your code should do that using appropriate assert statements, or
ASSERT, REQUIRES, and ENSURES. Then, if the bytecode itself or your virtual machine
implementation has a bug, it will be discovered as soon as unexpected incorrect
behavior occurs. The macro annotations are recommended so that there no undue
overhead for correct code when your machine has been debugged.

5.3 The Proliferation of Types

One common issue in writing virtual machines and similar (almost) self-referential
code is the proliferation of different types at different levels, sometimeswith the same
name. It will be important for you to understand the various level of types involved,
whether they are signed or unsigned, and what they refer to. In addition you will
have to cast between types for various operations.

The following table might help. The C type is only recommended, not required.

C0 type C0VM type C type (recommended)

int w32 int

bool w32 int

char w32 int

t[] * void*

t* * void*

struct s (none) (none)
function function pool index struct function info

library fn native pool index struct native info

Sometimes you will have to cast the C type that represent the C0VM types to a form
where they are appropriate for the operation to be performed on them. An example

14



of this are the arithmetic operations, which are reliably performed on unsigned ints
so we have to cast to and from these types.

5.4 Manage Your Time Well

Remember that this homework is worth 100 points. You should plan on working on
this for an hour or two every day, so you can ask for help early on if you need it.
Don’t wait until the last few days! Post general questions on the bulletin board (e.g.,
questions about the C0VM specification, wording of tasks, requirements for handin,
etc.).

15



A C0VM Instruction Reference

S = operand stack

V = local variable array, V[0..num_vars)

Instruction operands:

<i> = local variable index (unsigned)

<b> = byte (signed)

<s> = element size in bytes (unsigned)

<f> = field offset in struct in bytes (unsigned)

<c> = <c1,c2> = pool index = (c1<<8|c2) (unsigned)

<o> = <o1,o2> = pc offset = (o1<<8|o2) (signed)

Stack operands:

a : * = address ("reference")

x, i, n : w32 = 32 bit word representing an int, bool, or char ("primitive")

v = arbitrary value (v:* or v:w32)

Stack operations

0x59 dup S, v -> S, v, v

0x57 pop S, v -> S

0x5F swap S, v1, v2 -> S, v2, v1

Arithmetic

0x60 iadd S, x:w32, y:w32 -> S, x+y:w32

0x7E iand S, x:w32, y:w32 -> S, x&y:w32

0x6C idiv S, x:w32, y:w32 -> S, x/y:w32

0x68 imul S, x:w32, y:w32 -> S, x*y:w32

0x80 ior S, x:w32, y:w32 -> S, x|y:w32

0x70 irem S, x:w32, y:w32 -> S, x%y:w32

0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32

0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32

0x64 isub S, x:w32, y:w32 -> S, x-y:w32

0x82 ixor S, x:w32, y:w32 -> S, xˆy:w32

Local Variables

0x15 vload <i> S -> S, v v = V[i]

0x36 vstore <i> S, v -> S V[i] = v

16



Constants

0x01 aconst_null S -> S, null:*

0x10 bipush <b> S -> S, x:w32 (x = (w32)b, signed)

0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])

0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])

Control Flow

0x00 nop S -> S

0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)

0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)

0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)

0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)

0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)

0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)

0xA7 goto <o1,o2> S -> S (pc = pc + (o1<<8|o2))

Functions

0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v

(function_pool[c1<<8|c2] => g, g(v1,...,vn) = v)

0xB0 return ., v -> . (return v to caller)

0xB7 invokenative <c1,c2> S, v1, v2, ..., vn -> S, v

(native_pool[c1<<8|c2] => g, g(v1,...,vn) = v)

Memory

0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)

0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated)

0xBE arraylength S, a:* -> S, n:w32 (n = \length(a))

0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset)

0x63 aadds S, a:*, i:w32 -> S, (a+s*i):*

(a != NULL, 0 <= i < \length(a))

0x2E mload S, a:* -> S, v (v = *a, a != NULL)

0x4F mstore S, a:*, v -> S (*a = v, a != NULL)

0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)

0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)

17


	Overview
	The Structure of the C0VM
	Types
	Runtime Data Areas
	The Program Counter
	The Call Stack
	The Operand Stack
	The Heap
	Constant Pools
	Function Pools

	Frames
	Runtime Errors

	Instruction Set
	Stack Manipulation
	Arithmetic Instructions
	Local Variables
	Constants
	Control Flow
	Function Calls and Returns
	Native Function Calls
	Memory Allocation, Load, and Store

	Bytecode File Format
	Programming Tasks and Coding Advice
	Incremental Implementation
	Assertions
	The Proliferation of Types
	Manage Your Time Well

	C0VM Instruction Reference

