
Lecture Notes on
Interfaces

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 14
March 1, 2011

1 Introduction

The notion of an interface to an implementation of an abstract data type or li-
brary is an extremely important concept in computer science. The interface
defines not only the types, but also the available operations on them and the
pre- and postconditions for these operations. For general data structures it
is also important to note the asymptotic complexity of the operations so
that potential clients can decide if they data structure serves their purpose.

For the purposes of this lecture we call the data structures and the op-
erations on them provided by an implementation the library and code that
uses the library the client.

What makes interfaces often complex is that in order for the library to
provide its services it may in turn require some operations provided by the
client. Hash tables provide an excellent example for this complexity, so we
will discuss the interface to hash tables in details before giving the hash
table implementation. Binary search trees, discussed in provides another
excellent example.

2 Generic Hash Tables

We call hash tables generic because the implementation should work re-
gardless of the type of keys or elements to be stored in the table.

We start with the types. The implementations of which types are pro-
vided by the library? Clearly, the type of hash tables.

LECTURE NOTES MARCH 1, 2011

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/17-bst.pdf

Interfaces L14.2

/* library side types */
typedef ___ ht;

where we have left it open for now (indicated by ___) how the type ht of
hash tables will eventually be defined. That is really the only type pro-
vided by the implementation. In addition, it is supposed to provide three
functions:

/* library side functions */
ht ht_new(int m)
//@requires m > 0;
;

elem ht_search(ht H, key k); /* O(1) avg. */
void ht_insert(ht H, elem e) /* O(1) avg. */
//@requires e != NULL;
;

The function ht_new(int m) takes the initial size of the hash table as an
argument (which must be strictly positive) and returns a new hash table
without any elements.

The function ht_search(ht H, key k) searches for an element with
key k in the hash table H . If such an element exists, it is returned. If it does
not exist, we return NULL instead.

From these decisions we can see that the client must provide the type of
keys and the type of elements. Only the client can know what these might
be in any particular use of the library. In addition, we observe that NULL
must be a value of type elem.

The function ht_insert(ht H, elem e) inserts an element e into the
hash table H, which is changed as an effect of this operation. But NULL
cannot be a valid element to insert, because otherwise we would know
whether the return value NULL for ht_search means that an element is
present or not. We therefore require e not to be null.

To summarize the types we have discovered will have to come from the
client:

/* client-side types */
typedef ___* elem;
typedef ___ key;

We have noted the fact that elem must be a pointer by already filling in the
* in its definition. Keys, in contrast, can be arbitrary.

LECTURE NOTES MARCH 1, 2011

Interfaces L14.3

Does the client also need to provide any functions? Yes! Any function
the hash table requires which must understand the implementations of the
type elem and key must be provided by the client, since the library is sup-
posed to be generic.

It turns out there are three. First, and most obviously, we need a hash
function which maps keys to integers. We also provide the hash function
with a modulus, which will be the size of array in the hash table implemen-
tion.

/* client-side functions */
int hash(key k, int m)
//@requires m > 0;
//@ensures 0 <= \result && \result < m;
;

The result must be in the range specified by m. For the hash table imple-
mentation to achieve its advertised asymptotic complexity, the hash func-
tion should have the property that its results are evenly distributed be-
tween 0 and m. Interestingly, it will work correctly (albeit slowly), as long
as hash satisfies its contract even, for example, if it maps every key to 0.

Now recall how lookup in a hash table works. We map the key to an in-
teger and retrieve the chain of elements stored in this slot in the array. Then
we walk down the chain and compare keys of the stored elements with the
search key. This requires the client to provide two additional operations:
one to compare keys, and one to extract a key from an element.

/* client-side functions */
bool key_equal(key k1, key k2);

key elem_key(elem e)
//@requires e != NULL;
;

Key extraction works only on elements that are not null.

LECTURE NOTES MARCH 1, 2011

Interfaces L14.4

This completes the interface which we now summarize.

/*************************/
/* client-side interface */
/*************************/
typedef ___* elem;
typedef ___ key;

int hash(key k, int m)
//@requires m > 0;
//@ensures 0 <= \result && \result < m;
;

bool key_equal(key k1, key k2);

key elem_key(elem e)
//@requires e != NULL;
;

/**************************/
/* library side interface */
/**************************/
struct ht;
typedef struct ht* ht;

ht ht_new(int m)
//@requires m > 0;
;

elem ht_search(ht H, key k); /* O(1) avg. */
void ht_insert(ht H, elem e) /* O(1) avg. */
//@requires e != NULL;
;

3 A Tiny Client

Our sample application is to count word occurrences in the collected works
of Shakespeare. In this application, the keys are the words, represented
as strings. Data elements are pairs of words and word counts, the latter
represented as integers.

LECTURE NOTES MARCH 1, 2011

Interfaces L14.5

/******************************/
/* client-side implementation */
/******************************/
struct wcount {
string word;
int count;

};

int hash(string s, int m) {
return hash_string(s, m); /* from hash-string.c0 */

}

bool key_equal(string s1, string s2) {
return string_equal(s1, s2);

}

string elem_key(struct wcount* wc) {
return wc->word;

}

We can now fill in the types in the client-side of the interface.

typedef struct wcount* elem;
typedef string key;

4 A Universal Hash Function

One question we have to answer is how to hash strings, that is, how to map
string to integers so that the integers are evenly distributed now matter
how the input strings are distributed.

Pseudorandom number generators satisfy a similar criterion. They have
to generate numbers that are uniformly distributed over the range of inte-
gers, here −231 to 231 − 1. Their interface is pretty simple:

/* library file rand.h0 */
typedef struct rand* rand_t;
rand_t init_rand (int seed);
int rand(rand_t gen);

One can generate a random number generator (type rand_t) by initializing
it with an arbitrary seed. Then we can generate a sequence of random
numbers by repeatedly calling rand on such a generator.

LECTURE NOTES MARCH 1, 2011

Interfaces L14.6

We now show a so-called linear congruential pseudorandom number
generator. It stores a last random number (or the seed, at the start) and
generates the next number by just one multiplication and one addition. It
exploits modular arithmetic, and the trick for this kind of generator is to
find a good multiplier and summand. This kind of generator is fine for
random testing or (indeed) the basis for a hashing function, but the results
are too predictable to use it for cryptographic purposes such as encrypting
a message.

/* library file rand.c0 */
struct rand {
int seed;

};

rand_t init_rand (int seed) {
rand_t gen = alloc(struct rand);
gen->seed = seed;
return gen;

}

int rand(rand_t gen) {
gen->seed = gen->seed * 1664525 + 1013904223;
return gen->seed;

}

In particular, a linear congruential generator will sometimes have repeat-
ing patterns in the lower bits. If one wants numbers from a small range
it is better to use the higher bits of the generated results rather than just
applying the modulus operation.

It is important to realize that these numbers just look random, they aren’t
really random. In particular, we can reproduce the exact same sequence if
we give it the exact same seed. This property is important for testing pur-
poses: if we discover a bug during testing with pseudorandom numbers,
we can reliably reproduce it.

We can exploit this idea to construct a hash function for strings. We
multiply the ASCII value of each character in a string with a pseudorandom
number and add up all the results (in modular arithmetic). At the end, we
reduce the value to the desired range.

LECTURE NOTES MARCH 1, 2011

Interfaces L14.7

#use <string>

int hash_string(string s, int m)
//@requires m > 1;
//@ensures 0 <= \result && \result < m;
{
int a = 1664525; int b = 1013904223; /* inlined random number generator */
int r = 0x1337beef; /* initial seed */
int len = string_length(s);
int h = 0; /* empty string maps to 0 */
for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i && i <= len;
{
h = r*h + char_ord(string_charat(s, i)); /* mod 2^32 */
r = r*a + b; /* mod 2^32, linear congruential random no */

}
h = h % m; /* reduce to range */
//@assert -m < h && h < m;
if (h < 0) h += m; /* make positive, if necessary */
return h;

}

This clearly has the crucial property that on each string the result is unique,
so calling it on the same string multiple times will always give the same
answer.

5 A Fixed-Size Implementation of Hash Tables

The implementation of hash tables we wrote in lecture did not adjust their
size. This requires that we can a priori predict a good size. Choose the size
too large and it wastes space and slows the program down due to a lack of
locality. Choose the size too small and the load factor will be high, leading
to poor asymptotic (and practical) running time. In one of the homework
exercises you will get the opportunity to write a hash table that adjusts its
size as necessary, similar to the way unbounded arrays worked.

We start with the type of lists to represent the chains of elements, and
the hash table type itself.

LECTURE NOTES MARCH 1, 2011

Interfaces L14.8

/*******************************/
/* library-side implementation */
/*******************************/
struct list {
elem data; /* data != NULL */
struct list* next;

};
typedef struct list* list;

struct ht {
int size; /* 0 < size */
list[] A; /* \length(A) == size */

};

It will be convenient to have a function to create a new list cell with
element e and a given tail .

list list_new(elem e, list tail) {
list lnew = alloc(struct list);
lnew->data = e;
lnew->next = tail;
return lnew;

}

Next we provide a function to check if a hash table is valid. Besides the
invariants noted above we should check that the hash value of the key of
every element in the chain stored in A[i] is indeed i.

bool is_chain(list l, int i, int m) {
while (l != NULL) {
if (l->data == NULL) return false;
if (hash(elem_key(l->data), m) != i) return false;
l = l->next;

}
return true;

}

bool is_ht(ht H) {
if (H == NULL) return false;
if (!(H->size > 0)) return false;
//@assert H->size == \length(H->A);

LECTURE NOTES MARCH 1, 2011

Interfaces L14.9

for (int i = 0; i < H->size; i++)
//@loop_invariant 0 <= i && i <= H->size;
if (!(is_chain(H->A[i], i, H->size))) return false;

return true;
}

Recall that the test on the length of the array must be inside an annotation,
because the \length function is not available when the code is compiled
without dynamic checking enabled.

Allocating a hash table is straightforward.

ht ht_new(int m)
//@requires m > 0;
//@ensures is_ht(\result);
{
ht H = alloc(struct ht);
H->size = m;
H->A = alloc_array(list, m);
return H;

}

Equally straightforward is searching for an element with a given key.

elem ht_search(ht H, key k)
//@requires is_ht(H);
{
int h = hash(k, H->size);
list l = H->A[h];
while (l != NULL)
//@loop_invariant is_chain(l, h, H->size);
{
if (key_equal(elem_key(l->data), k))
return l->data;

l = l->next;
}

return NULL;
}

We can extract the key from the element l->data because the data can not
be null in a valid hash table. This follows from the loop invariant that l is a
valid chain for hash value h and the current size.

LECTURE NOTES MARCH 1, 2011

Interfaces L14.10

Inserting an element follows generally the same structure as search. If
we find an element in the right chain with the same key we replace it. If we
find none, we insert a new one at the beginning of the chain.

void ht_insert(ht H, elem e)
//@requires is_ht(H);
//@ensures is_ht(H);
{
assert(e != NULL); /* cannot insert NULL element */
key k = elem_key(e);
int h = hash(k, H->size);
list l = H->A[h];
while (l != NULL)
//@loop_invariant is_chain(l, h, H->size);
{
if (key_equal(elem_key(l->data), k)) {
l->data = e; /* modify in place if k already there */
return;

}
l = l->next;

}
/* k is not already in the hash table */
/* insert at the beginning of the chain at A[h] */
H->A[h] = list_new(e, H->A[h]);
return;

}

Exercises

Exercise 1 Extend the hash table implementation so it dynamically resizes itself
when the load factor exceeds a certain threshold. When doubling the size of the
hash table you will need to explicitly insert every element from the old hash table
into the new one, because the result of hashing depends on the size of the hash table.

Exercise 2 Extend the hash table interface with new functions num_elems that
returns the number of elements in a table and ht_tabulate that returns an array
with the elements in the hash table, in some arbitrary order.

Exercise 3 Complete the client-side code to build a hashtable containing word
frequencies for the words appearing in Shakespeare’s collected works. You should
build upon the code in Assignment 2.

LECTURE NOTES MARCH 1, 2011

Interfaces L14.11

Exercise 4 Extend the hash table interface with a new function to delete an ele-
ment with a given key from the table. To be extra ambitious, shrink the size of the
hash table once the load factor drops below some minimum, similarly to the way
we could grow and shrink unbounded arrays.

LECTURE NOTES MARCH 1, 2011

