
C0 Reference

15-122: Principles of Imperative Computation
Frank Pfenning

August 21, 2014
Compiler revision 384

(updates since January 30, 2011)

1 Introduction

The programming language C0 is a carefully crafted subset of the C aimed
at teaching introductory algorithms and imperative programming. It is re-
stricted enough to permit a straightforward safe implementation in which
attempts to access an array element out of bounds array can be reliably
detected. This eliminates a class of insidious bugs that are difficult to diag-
nose or detect through testing, as numerous security problems with com-
mercial software attest. As a consequence the language soundly supports
a conservative garbage collector to reclaim memory, rather than relying on
error-prone explicit memory management. It is intended that all opera-
tions are completed defined, although even correct programs may abort
when they run out of memory. The combination of these features allow us
to soundly reason about contracts and loop invariants, which constitute a
new language layer. More about the differences and the transition to C in a
separate document; in this document we introduce the language itself. We
assume the reader has some familiarity with programming, but not neces-
sarily with C. This document is not intended as a tutorial, but as a concise
reference.

2 Types

Programming languages can be characterized by the types that they sup-
port, and C0 is no exception. We briefly list the types and explain their
meaning before discussing the constructions associated with each form of
type in turn.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.2

int The only numeric type supported in C0 is int. Values of this type are
32-bit words, interpreted as integers according to two’s complement
representation. Computations are performed modulo 232.

bool The type of booleans has just two elements, true and false. They
are used for conditions, as well as contracts.

char The type of characters contains ASCII (not Unicode) characters writ-
ten as ’c’.

string The type of strings contains constant strings of characters, written
as "this is a string".

t [] For any type t, we can form the type t[], the type of arrays of values
of type t. A value of this type is a reference to an array stored in
memory. An array A has an intrinsic length n determined at the type
of allocation; its elements can be referenced as A[0] through A[n− 1].

t * For any type t, we can form the type t*, the type of pointers to values of
type t stored in memory. Its values are addresses and a special value
NULL.

struct s Structs are aggregates whose members can be accessed through
field names. The fields and their types for each structure named s
have to be explicitly declared. Structures are allocated in memory.
Unlike the elements of other types, structures cannot be assigned to
variables or passed as function arguments because they can have ar-
bitrary size. Instead, we pass pointers to structs or arrays of structs.

Functions and commands There are no explicit types for functions and
commands, because the language does not allow them to be passed as
arguments or stored explicitly. Of course, the language has means to
define and invoke functions, and execute commands including vari-
able assignments, conditionals and loops.

Contracts Again, there is no explicit type for contracts, but C0 supports
contracts governing the permissible invocations, return values, and
effects of functions. Currently, they can only be checked dynamically,
although some tools for static checking are under development.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.3

3 Integers

The type of integers is int. The values are 32-bit words, interpreted accord-
ing to two’s complement arithmetic. This means arithmetic is modulo 232,
with the minimal representable integer being −231 = −2147483648 and the
maximal being 231 − 1 = 2147483647. Decimal constants c in a program
must be in the range 0 ≤ c ≤ 231, where 231 = −231 according to modular
arithmetic. Hexadecimal constants must fit into 32 bits.

Integer operations are the usual binary + (addition), - (subtraction), *
(multiplication), which operate modulo 232. In addition we have integer
division n/k and modulus n%k. Division truncates towards zero, and both
division and modulus raise an overflow exception if k = 0 or n = −231 and
k = −1. If n is negative, the result of the modulus will be negative, so that
(n/k)*k + n%k == n when the left-hand side doesn’t overflow.

Comparisons <, <=, >=, > return a boolean when applied to integers, as
do == (equality) and != (disequality).

We can also view and manipulate values of type int as 32-bit words.
For this purpose, we have a hexadecimal input format. A number constant
in hexadecimal form starts with 0x and contains digits 0 through 9 and a

through f. Hexadecimal digits are not case sensitive, so we can also use X

and A through F.
Binary bitwise operations on values of type int are & (and), ^ (exclusive

or), | (or), and we also have unary bitwise complement ~. The hybrid shift
operators n << k and n >> k shift the bits of n by k. Here, k is required to
be in the range from 0 to 31, inclusively. Otherwise, it raises an arithmetic
exception. On the left shift, the lower bits are filled with 0; on the right
shift the higher bit is copied. This means that left shift by k is equal to
multiplication by 2k, and right shift k is like division by 2k, except that it
truncates towards −∞ rather than 0.

The default value for integers, which is needed for some allocation op-
erations, is 0.

The precedence and associativity of the operators is shown in Figure 3.
In general, expressions are guaranteed to be evaluated from left-to-right so
that, for example, in f(x) + g(x) we first call f and then g. Any effects
such as input/output are guaranteed to happen in the specified order.

4 Booleans

The type bool is inhabited by the two values true and false.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.4

Booleans can be combined with logical (as opposed to bit-wise) con-
junction && (and) and disjunction || (or), which are binary operators. Their
evaluation short-circuits in the sense that in b && c, if b evaluates to false,
then c is not evaluated. Similarly, in b || c, if b evaluates to true, then c is
not evaluated. There is also a unary operator of logical negation ! (not).

Booleans can be tested with a conditional expression (also called ternary
operator) b ? e1 : e2 which first evaluates b. If b is true, it then evaluates
e1 and returns its value, otherwise it evaluates e2 and returns its value. In
conditional expressions, both branches e1 and e2 must have the same type,
and this type must be small (see the sections on functions and structs).

Booleans can be compared for equality (==) and disequality (!=).
The default value is false.

5 Functions

Functions are not first-class in C0, but can only be declared or defined at
the top-level of a file. A function definition has the form

t g (t1 x1, ..., tn xn) { body }

where t is the result type of the function called g which takes n arguments
of type t1, . . . , tn. The scope of parameters x1, . . . , xn is body , which is a
block consisting of a sequence of additional local variable declarations fol-
lowed by a sequence of statements. Note that function definitions are not
terminated by a semi-colon. The scope of the function name g include body
and the remainder of the compilation unit, typically a file. Currently, if
multiple files are given to the compiler they are concatenated sequentially
into a single compilation unit.

Argument and result types must be small, which means that they can-
not be structs. Instead of structs, programs should pass either pointers to
structs or arrays containing structs.

Functions may be declared without giving a definition in the form

t g (t1 x1, ..., tn xn);

which allows the use of g in subsequent functions in the same compilation
unit.

A function may be declared multiple times in a compilation unit. Those
that are referenced (and not in a library) must be defined exactly once. Mul-
tiple declarations must be consistent, and consistent with a possible defini-
tion, but can differ in the name of the parameters and contracts.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.5

Library functions are special in that they may be declared in a library
header file <lib>.h0 for library <lib>, but they cannot be defined. Li-
braries can be included on the command line using the switch -l<lib>.
See a separate description of the compiler interface.

Expressions denoting function calls have the form g(e1,...,en). The
arguments e1, . . . , en are evaluated in sequence from left to right and the
resulting values passed to the function g.

6 Commands

Commands are not first-class in C0, but occur in the bodies of functions.
We have assignments, conditionals, loops, blocks, and returns.

6.1 Assignments

Basic assignments x = e; assign to x the value of the expression e. The
types of x and e must match for the assignment to be legal.

More generally, the left-hand side of an assignment can be an lvalue
which includes additional ways of referencing memory. Besides variables,
the other possible lvalues are explained below for arrays (lv[e]), pointers
(*lv), and structs (lv.f). In assignment lv = e, the left-hand side lv is
evaluated first, then e, and then the assignment is attempted (which may
fail based on the form of lv, for arrays or pointers).

There are also compound assignments of the form lv op= ewhich trans-
late to lv = lv op e where op is a binary operator among +, -, *, /, %, &, ^,
|, <<, or >>, except that lv is evaluated only once.

Finally, there compound assignments lv++ and lv-- which desugar
into lv += 1 and lv -= 1, respectively.

6.2 Expressions as Statements

An expression e; can be used as a statement. Such a statement evaluates e,
incurring all of its effects, and then discards the return value if there is any.

6.3 Conditionals

Conditionals have the form if (e) s1 else s2. Note that conditionals
(like loops) are not terminated by a semi-colon. The condition e must be of
type bool. It is evaluated first, followed either by s1 (if e is true) or s2 (if e
is false).

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.6

There is a shorthand, if (e) s1, which omits the else-clause, which
translates into if (e) s1 else {} where {} is the empty block which has
no effect. The possibility to omit else-clauses creates an ambiguity because
with two ifs and only one else it may be unclear which condition the else
is associated with. For example,

if (e1) if (e2) s1 else s2

could be read as

if (e1) {if (e2) s1} else s2

or

if (e1) {if (e2) s1 else s2}

The rule is that an else-clause is matched up with the most recent if

that does not have an else-clause while respecting explicit grouping into
blocks, so the second reading is the correct one.

6.4 Loops

There are two forms of loops.

while (e) s

begins by evaluating e. If e evaluates to true it continues with the execution
of s, subsequently testing e again. If e evaluates to false we finish the
while loop and continue with the next statement.

for (s1; e; s2) s3

begins by evaluating the loop initializer s1 which must be a simple state-
ment, usually an assignment or a variable declaration. Then it evaluates
e. If e is true, we execute the body s3 followed by the step expression s2,
which must again be an simple statement (but may not be a variable decla-
ration), followed in turn by the exit test e. Both s1 and s3 may be omitted, in
which case they act like the empty command which immediately finishes
without an effect. If s1 is a variable declaration, the scope of the declared
variable consists of e, s2, and s3.

The two control commands that can affect the execution of a loop, break
and continue, are only available in the extended language standard C1, but
are reserved keywords in C0. See Section 15.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.7

6.5 Blocks

Blocks have the form {ss}, where ss is a (possibly empty) sequence of state-
ments. The statements in ss are executed in order.

One particular form of statement is a variable declaration, which has
one of the two forms

t x;

where t is a type and x is a variable, or

t x = e;

where t is a type, x is a variable, and e is an expression initializing x which
must have type t.

In either form, the scope of x consists of the remaining declarations and
statements in the block containing the declaration.

Variables declared in an outer scope (either as function parameters of
an enclosing block) can not be declared again in an inner block with the
same name.

6.6 Returns

Anywhere in the body of a function there can be a return statement, either
of the form return e; for an expression e or just return;.

In the form return e;, the type of e must match the result type of the
function. In the form return;, the result type of the function must be the
special type void that can only be used to indicate that a function does not
return a value. Such functions can only be called as expressions that appear
as statements.

6.7 Assertions

An assertion statement has the form

assert(e);

where e is a boolean test. If e evaluates to false, an error message is issued
and the computation is aborted. Assertion statements are always executed,
no matter whether contracts are checked dynamically (see Section 13).

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.8

6.8 Errors

An error statement has the form

error(s);

where s is a string expression. Errors are intended to be used as a response
to bad user input, whereas failed assertions indicate an internal error of
the program. Executing an error statement will print the string and then
immediately terminate the program.

7 Characters

Characters are a special type to represent components of strings. They are
written in the form ’c’, where c can be any printable ASCII character, as
well as the following escape sequences \t (tab), \r (return), \f (formfeed),
\a (alert), \b (backspace), \n (newline), \v (vertical tab), \’ (quote), \" (dou-
blequote), \0 (null). The default value for characters is \0. Characters can
be compared with ==, !=, <, <=, >=, > according to their ASCII value, which
is always in the range from 0 to 127, inclusively.

8 Strings

Strings have the form "c1...cn", where c1, . . . , cn is an ASCII character as
above, including the legal escape sequences except for null (\0), which may
not appear in strings. The double-quote character itself " must be quoted
as \" so it is not interpreted as the end of the string. The default value for
type string is the empty string "". Strings can not be compared directly
with comparison operators, because in a language such as C the compari-
son would actually apply to the addresses of the strings in memory, with
unpredictable results. Appropriate comparison functions are provided by
the string library.

9 Arrays

The type of arrays with elements of type t is denoted by t []. Arrays must
be explicitly allocated in memory, but they do not need to be deallocated,
a function performed by the garbage collector. For this purpose we have a
new expression

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.9

alloc_array(t, e)

which returns a reference to a new array of type t []. The expression e
must evaluate to a non-negative integer n denoting the length of the allo-
cated array. Elements of an array A allocated in this way are accessed as
A[0] through A[n-1]. Attempt to index an array with a negative number
or a number greater or equal to n will result in an array bounds violation
that will terminate the program.

Array references can also be used as lvalues. For example, A[0] = 1

will write 1 to the first element of A which must be an integer array, and
A[2]++ will increment the third element in the array.

For every type t there is a distinguished zero-sized array of type t []

which serves as the default. Because its size is zero, the only operations
that can be performed on this element are comparisons for equality (==)
and disequality (!=).

It is important to remember that comparisons of variables of type t []

are comparisons of array references, and not the array elements, and simi-
larly for argument passing and variable assignment.

Because of its roots in C, one cannot determine the length of arrays in
programs. This allows an unsafe implementation in which array bounds of
accesses are not checked, a low-level efficiency improvement that can make
a significant difference in certain kinds of highly numerical code. On the
other hand, contracts must be able to mention the length of arrays to ensure
the absence of runtime errors. For that purpose there is a special function
\length(e) that can only be used in contracts. When contracts are to be
checked dynamically, the compiler will take care to represent arrays such
that the length is stored.

10 Pointers

The type of pointers of type t is denoted by t*. We obtain a pointer to a
memory location holding a value of type t using the new expression

alloc(t)

We dereference pointers using the expression *e which evaluates to a value
of type t if e evaluates to a pointer of type t*.

Pointers also introduce a new lvalue *lv which references the memory
location or variable denoted by lv.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.10

For each type t there is a special pointer NULL of type t*. Attempts
to dereference NULL will result in a runtime exception that terminates the
program. NULL is the default value for pointers at each type.

The constant NULL introduces a type ambiguity which can be locally re-
solved in expressions where relevant. For example, a function call f(NULL)
is well-typed if f expects an argument of type int* or bool* or int[]*, etc.
The one exception to this rule is code of the form *NULL which could be
used at an arbitrary type t. In order to avoid this typical ambiguity, it is an
error to write *NULL in programs.

11 Structs

Structs are the only types that can aggregate values of different type. We
write struct s for the type of structs named s. Structure names occupy
their own name space, as do the names of the fields of structs; neither can
conflict with names of variables, functions, or other fields or struct names.
Structs with name s are defined with

struct s { t1 f1; ... tn fn; };

and have fields named f1, . . . , fn of types t1, . . . , tn, respectively. After such
a declaration, the field fi of a struct denoted by e of type struct s can be
accessed with the expression e.fi and has type ti.

Structs must be allocated in memory. Because they may be of large size,
their value can not be held in a variable or passed as an argument to a func-
tion, or returned from a function. We therefore call struct s a large type,
while all other types in the language are small. In particular, array types t[]
are small because a value of this type is a reference to an array, not the array
itself. In contrast, a value of type struct s is the struct itself. This means
that programs mostly manipulate either pointers to structs struct s* or
arrays of structs struct s[]. As a result there is no special form to allo-
cate a struct: structs will be allocated as the result of allocating memory
with alloc(struct s) or alloc_array(struct s, e) or other data types
with embedded structs. Each of the fields of a struct allocated in this way
is initialized with default values according to their type.

Because pointers to structs are common, there are two constructs sup-
porting the idiomatic use of pointers to structs. The first is the expression
e->f which stands for (*e).f.

The second is a general form of type definition written as

typedef t a

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.11

where t is a type and a is a type name. This definition can appear only at the
top-level and the scope of the type name a is the rest of the compilation unit.
In order avoid certain ambiguities in the grammar, type names a occupy
the same name space as variables and functions. It is a conflict to declare
or define a function or a variable with the same name as a type.

The idiomatic, but not the only use of the above, has the form

typedef struct s* s

after which the type name s represents pointers to struct s.
Struct types struct s can be used before they are defined, but they can

also be explicitly declared as

struct s;

Since the fields of such a struct are not known, they cannot be accessed by
a program. Nonetheless, pointers to elements of such type have a uniform
size and can therefore be passed as arguments even without knowing the
precise representation of s. This allows a very weak form of polymorphism
in C0.

12 Compiler Directives

As described elsewhere, the cc0 compiler for C0 processes a list of files in
sequence, and can also include specific libraries as documented in the C0
Library Reference. One can also include references to specific libraries and
other source files in C0 source files directly. For libraries this is good style,
because it makes dependencies on libraries explicit. The directive1

#use <lib>

will load the library called lib before processing the remainder of the file. To
load a library, the compiler will search for and process files lib.h0 (for ex-
ternal libraries) and lib.h0 and lib.c0 (for libraries written in C0) in a set
of implementation-dependent directories. The second form of the directive

#use "filename"

will load the file filename (typically with a .c0 extension) and process it
before processing the rest of the file.

Either form of the directive will not perform any action if the library or
file has already been loaded during the current compilation process. #use
directives must precede all other declarations in a file.

1with explicit angle brackets < and >

15-122 SPRING 2011 JANUARY 9, 2015

http://www.cs.cmu.edu/~fp/courses/15122-s11/misc/c0-libraries.pdf
http://www.cs.cmu.edu/~fp/courses/15122-s11/misc/c0-libraries.pdf

Reference C0.12

13 Contracts

Contracts collectively refer to assertions made about the code. Contracts
are never necessary to execute the code, but it is possible to check the ad-
herence to contracts dynamically by compiling the code with a special flag.
Contracts specify either pre- and post-conditions for functions, loop invari-
ants, or preconditions for statements.

From the syntactical point of view, contracts appear as special com-
ments or annotations that can be ignored by a compiler that does not sup-
port them. As such, they constitute a separate language layer which is
entirely absent from C. Annotations start with //@ and extend to the end of
the line, or delimited by /*@ and @*/. For illustration purposes below we
use the single-line form.

Contracts should never have store effects and should terminate, although
the compiler currently does not check that. It is permissible for contracts to
raise exceptions, including the exception that the contract was not satisfied.

13.1 Function Contracts

For functions to work correctly, they often impose conditions on their input.
For example, an integer square root may require its argument to be non-
negative, or a dictionary insertion function may require the dictionary to
be sorted. Conversely, it will make some guarantees on its outputs. For
example, the integer square root should really return the root and perhaps
more specifically the positive one, and the insertion function should really
insert the new word into the dictionary into its proper place. The former is
called a precondition for the function, specified with @requires; the latter is
a postcondition specified with @ensures.

A function definition than has the general form

t g (t1 x1, ..., tn xn)

contracts

{ body }

where a contract is one of the following

//@requires e;

//@ensures e;

The expression e, which must have type bool can mention the parameters
x1, . . . , xn. It can also mention the special function \length(e) mentioned
above, the special variable \result in @ensures clauses. The body of a

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.13

function may not assign to any variable that occurs in an @ensures clause.
This means that the function contract can be correctly interpreted without
knowing the body of the function.

Contracts must be in single-line or multi-line comments, as in the fol-
lowing example.2

int exp (int k, int n)

//@requires n >= 0;

//@ensures \result >= 1;

/*@ensures \result > n; @*/

{ int res = 1; int i = 0;

while (i < n) {

res = res * k;

i = i + 1;

}

return res;

}

When dynamic checking of contracts is enabled, @requires e; speci-
fications are checked just before the function body and @ensures e; are
checked just before the return, with the special variable \result bound to
the return value.

13.2 Loop Invariants

Loop invariant annotations have the form

//@loop_invariant e;

where e has type bool. The general form of while and for loops is

while (e) invs s

for (s1; e; s2) invs s

where invs is a possibly empty sequence of invariants. As for function
contracts, they must be stylized single-line or delimited comments.

When dynamic checking is enabled, the loop invariant is checked on
every iteration just before the exit condition e is evaluated and tested.

2For modular arithmetic as specified for C0, this contract is not satisfied because the
result may be negative.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.14

13.3 Assertions

Assertion annotations have the form

//@assert e;

An assertion annotation must precede another statement and can be seen
as guard on that statement. When a function is called correctly, according
to its precondition (//@requires), the assert annotations should not fail; in
that sense they express expected internal invariants of functions, just like
loop invariants.

13.4 Purity

Functions that are called from annotations must be pure, which means that
they may not modify previously allocated memory. Allowing such con-
tracts could lead to different results, depending on whether contract check-
ing is enabled or not. Other kinds of effects, like input, output, or ex-
ceptions are permitted. The C0 language implementation performs a light
analysis pass over the code to uncover functions used in annotations with
side effects and gives an appropriate error message. Since purity for con-
tract functions is at present not strictly part of the language definition, pu-
rity checking can be disabled by passing the flag --no-purity-check.

14 Grammar

We now summarize the grammar rules of the language.

14.1 Lexical tokens

We have the following classes of tokens: identifiers, numerical constants,
string literals, character literals, separators, operators, and reserved key-
words. In addition there is whitespace, which is a regular space, horizontal
and vertical tab, newline, formfeed and comments. Whitespace separates
tokens, but is otherwise ignored. Other control (non-printing) characters in
the input constitute an error.

Comments may be on a single line, starting with // and ending with
newline, or delimited, starting with /* and ending with */. Delimited com-
ments must be properly nested. When annotations are parsed and checked,
the first character of a comment must not be @, which would start an anno-
tation.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.15

<id> ::= [A-Za-z_][A-Za-z0-9_]*

<num> ::= <decnum> | <hexnum>

<decnum> ::= 0 | [1-9][0-9]*

<hexnum> ::= 0[xX][0-9a-fA-F]+

<strlit> ::= "<schar>*"

<chrlit> ::= ’<cchar>’

<liblit> ::= <<lchar>*>

<schar> ::= <nchar> | <esc>

<cchar> ::= <nchar> | <esc> | " | \0

<nchar> ::= (normal printing character except ")

<lchar> ::= (normal printing character except >)

<esc> ::= \n | \t | \v | \b | \r | \f | \a

| \\ | \’ | \"

<sep> ::= (|) | [|] | { | } | , | ;

<unop> ::= ! | ~ | - | *

<binop> ::= . | -> | * | / | % | + | - | << | >>

| < | <= | >= | > | == | !=

| & | ^ | | | && | || | ? | :

<asnop> ::= = | += | -= | *= | /= | %= | <<= | >>=

| &= | ^= | |=

<postop> ::= -- | ++

Figure 1: C0 lexical tokens

Compiler directives are always on a single line and have the form #use

followed by whitespace and then either a library literal <liblit> or a string
literal <strlit>. Other top-level directives starting with # are ignored, but
may produce a warning.

We present the token classes as regular expressions. [Square brackets]
surround enumerations of single characters or character ranges like a-z,
<angle brackets> surround nonterminals in the grammar.

The reserved keywords of the language are:

int bool string char void struct typedef

if else while for continue break return assert

true false NULL alloc alloc_array

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.16

14.2 Grammar

We present the grammar in a similarly abbreviated style in Figure 2. Here,
[brackets] surround optional constituents. Identifiers occupy four name
spaces: variables and function names <vid>, type names <aid>, struct names
<sid>, field names <fid>. Variable and function names may not conflict
with type names; otherwise the same identifiers can be reused.

14.3 Annotations

Annotations may be on a single line, starting with //@ and ending with
newline, or delimited, starting with /*@ and ending with @*/. In a annota-
tions, the @ character is treated as whitespace.

The additional reserved keywords are

requires ensures loop_invariant \result \length \hastag

The grammar is modified by adding the following cases. The restrictions
on annotations are detailed in Section 13.

This extension introduces another ambiguity, because a statement of the
form <anno> <anno> <stmt> could be one statement with two annotations,
or an annotated annotated statement. We resolve this by always interpret-
ing it as a single statement with two annotations, or multiple annotations
in the general case.

15 C1 Language Extension

The C1 language extension of C0 contains some experimental features, which
are automatically permitted when the compiler is invoked on files with the
.c1 file extension.

15.1 Advanced Control Constructs

As of September 1, 2013 (svn revision 350), the C1 language standard sup-
ports the break and continue control constructs, previously available in
C0.

<stmt> ::= ... | break ; | continue ;

Execution of the break statement immediately exits the innermost loop
that contains it and proceeds with the statement following the loop. The
loop invariant is not checked.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.17

<prog> ::= (<gdecl> | <gdefn>)*

<gdecl> ::= struct <sid> ;

| <tp> <vid> ([<tp> <vid> (, <tp> <vid>)*]) ;

| #use <liblit> \n | #use <strlit> \n

<gdefn> ::= struct <sid> { (<tp> <fid> ;)* } ;

| <tp> <vid> ([<tp> <vid> (, <tp> <vid>)*]) { <stmt>* }

| typedef <tp> <aid> ;

<stmt> ::= <simple> ;

| if (<exp>) <stmt> [else <stmt>]

| while (<exp>) <stmt>

| for ([<simple>] ; <exp> ; [<simple>]) <stmt>

| return [<exp>] ;

| { <stmt>* }

| assert (<exp>) ;

| error (<exp>) ;

<simple> ::= <lv> <asnop> <exp>

| <lv> ++

| <lv> --

| <exp>

| <tp> <vid> [= <exp>]

<lv> ::= <vid> | <lv> . <fid> | <lv> -> <fid>

| * <lv> | <lv> [<exp>] | (<lv>)

<tp> ::= int | bool | string | char | void

| <tp> * | <tp> [] | struct <sid> | <aid>

<exp> ::= (<exp>)

| <num> | <strlit> | <chrlit> | true | false | NULL

| <vid> | <exp> <binop> <exp> | <unop> <exp>

| <exp> ? <exp> : <exp>

| <vid> ([<exp> (, <exp>)*])

| <exp> . <fid> | <exp> -> <fid>

| <exp> [<exp>]

| alloc (<tp>) | alloc_array (<tp> , <exp>)

Figure 2: C0 Grammar, without annotations

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.18

Operator Associates Meaning

() [] -> . left parens, array subscript,
field dereference, field select

! ~ - * ++ -- right logical not, bitwise not,
unary minus, pointer dereference
increment, decrement

* / % left integer times, divide, modulo
+ - left plus, minus
<< >> left (arithmetic) shift left, right
< <= >= > left comparison
== != left equality, disequality
& left bitwise and
^ left bitwise exclusive or
| left bitwise or
&& left logical and
|| left logical or
? : right conditional expression
= += -= *= /= %=

&= ^= |= <<= >>= right assignment operators

Figure 3: Operator precedence, from highest to lowest

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.19

<spec> ::= requires <exp> ;

| ensures <exp> ;

| loop_invariant <exp> ;

| assert <exp> ;

<anno> ::= //@ <spec>* \n

| /*@ <spec>* @*/

<gdecl> ::= ...

| <tp> <vid> ([<tp> <vid> (, <tp> <vid>)*]) <anno>* ;

<gdefn> ::= ...

| <tp> <vid> ([<tp> <vid> (, <tp> <vid>)*]) <anno>*

{ <stmt>* <anno>* }

<stmt> ::= ... | <anno>+ <stmt> | { <stmt>* <anno>+ }

<exp> ::= ... | \result | \length (<exp>)

Figure 4: C0 grammar extensions for annotations

Execution of the continue statement immediately short-circuits the body
of the innermost loop that contains it and proceeds with the exit test (in a
while loop) or the step command followed by the exit test (in a for loop).
If contract checking is enabled, the loop invariant is checked prior to the
exit test.

15.2 Generic Pointers

As of August 21, 2014 (svn revision 384), the C1 language standard sup-
ports generic pointers of type void*. The syntax is extended by allowing
a cast prefix operator of the same precedence as the other prefix operators
in the grammar (see Figure 3). For use in contracts, we have the additional
construct \hastag(<tp>, <exp>).

<exp> ::= ... | (<tp>) <exp> | \hastag (<tp> , <exp>)

The form (void*)e casts the expression e of type t * to be of type (void*).
Operationally, this new pointer references a pair consisting of a runtime
representation of the type t * (the tag) and the pointer value of e.

The second form (t*)e where t 6= void casts an expression e of type
void* to have type t *. If the tag agrees with the type t *, it strips off the tag

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.20

and returns the underlying pointer of type t *. If the tags do not agree, an
appropriate runtime exception is raised and the program is terminated.

In contracts, we can verify the value of a tag with the boolean expression
\hastag(t*,e) which is true if e (which must be of type void*) has tag t *
and false otherwise.

Casting does not affect the null pointer, which remains NULL and serves
as the default value of type void*. Therefere, we consider \hastag(t*,NULL)
to be true for any permissible type t different from void.

15.3 Function Pointers

As of August 21, 2014 (svn revision 384), the C1 language standard also
supports a limited form of function pointer. We add a new unary prefix
operator & pronounced “address of ”, which can only be applied to functions
and has the same precedence as other unary prefix operators such as *. We
can dereference a function pointer and apply it to a sequence of arguments
with a new form of function call.

<unop> ::= ... | &

<exp> ::= ... | (* <exp>) ([<exp> (, <exp>)*])

In order to use function pointers we need to be able to assign them
types. For this purpose, we allow a particular idiomatic use of typedef
which is consistent with but much more restrictive than C and declares a
function type name <fnid> which occupies the same name space as (ordi-
nary) type names.

<gdefn> ::= ...

| typedef <tp> <fnid> ([<tp> <vid> (, <tp> <vid>)*]) <anno>* ;

<tp> ::= ... | <fnid>

Note that this is exactly the same form as a function declaration (also
called a function prototype) preceded by the typedef keyword. In particular,
it also allows type annotations which can be used to impose contracts on
functions of type <fnid>.

Function types, named by a <fnid> are large types and, moreover, func-
tion values cannot be allocated on the stack or heap. That is, we store and
pass only pointers to functions, not functions themselves. Function type
names are treated nominally, which means that two distinct function type
names are considered different, even if their definitions happen to be the
same.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.21

Here is a small example of the use of function pointers and generic
pointers to specify sortedness of an array segment of non-null generic data.

/*** generic section ***/

/* define function type ’cmp’ */

typedef

bool cmp(void* p, void* q)

//@requires p != NULL && q != NULL;

;

/* ’pred’ is a pointer to a comparison function */

bool is_sorted(cmp* pred, void*[] A, int lower, int upper)

//@requires 0 <= lower && lower <= upper && upper <= \length(A);

//@requires pred != NULL;

{

for (int i = lower; i < upper-1; i++)

//@loop_invariant lower <= i;

if (!(*pred)(A[i], A[i+1])) /* call function ’pred’ */

return false;

return true;

}

/*** specific instance ***/

bool leq(void* p, void* q)

//@requires p != NULL && q != NULL;

//@requires \hastag(int*, p) && \hastag(int*, q);

{

return *(int*)p <= *(int*)q;

}

int main() {

int n = 10;

void*[] A = alloc_array(void*, n);

for (int i = 0; i < n; i++) {

int* p = alloc(int); *p = i;

A[i] = (void*)p;

}

return is_sorted(&leq, A, 0, n) ? 1 : 0;

}

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.22

16 Static Semantics Reference

The static semantics enforces the following conditions.

• #use directives must precede all other declarations.

• All operators and functions are used with the correct number of argu-
ments of the correct type, as explained in the sections on the various
language constructs.

• Operators <, <=, >=, and > are overloaded in that they apply to type
int and char. Both sides must have the same type.

• Operators == and != are overloaded in that they apply to types int,
bool, char, t [], and t *. They do not apply to arguments of type
string and struct s. Both sides must have the same type.

• Structs cannot be passed to or from functions or assigned to variables.

• All control-flow paths in the body of each function end with a return
statement of the correct type, unless the function has result type void.

• Every variable must be declared with its type.

• Along each control-flow path in the body of each block in each func-
tion, each locally declared variable is initialized before its use.

• Function parameters and locally declared variables with overlapping
scopes may not have the same name.

• Names of functions or variables may not collide with the names of
defined types.

• Functions may be declared multiple times with consistent types. Func-
tions that are referenced (and not library functions) must be defined
exactly once. Structs may be declared multiple times, but may be de-
fined at most once. Structs declared in libraries cannot be defined.
Type names may be defined only once (they cannot be declared).

• A function int main(); is implicitly declared and also implicitly ref-
erenced, because this is the function called when an executable re-
sulting from compilation is invoked. Therefore, when a collection of
sources is compiled, at least one of them must define main to match
the above prototype.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.23

The return value of main is not treated as an indication of success or
failure of the program as it is in C; any program that returns from
main prints the returned integer and signals to the operating system
that the program completed successfully, whereas any program that
returns by executing the error statement signals to the operating sys-
tem that it completed unsuccessfully.

• Field names within each struct must be pairwise distinct.

• Expressions *NULL are disallowed.

• Type void is used only as the return type of functions.

• Expressions, used as statements, must have a small type or void.

• Undefined structs cannot be allocated.

• continue and break statements can only be used inside loops.

• The step statement in a for loop may not be a declaration.

• Integer constants are in the range from 0 to 231.

• * <lv> ++ and * <lv> --must be be explicitly parenthesized to over-
ride the right-to-left associative interpretation of ++ and --.

In addition we check in annotations:

• \result is only legal in @ensures clauses.

• @requires and @ensures can only annotate functions.

• @loop_invariant can only precede loop bodies.

• @assert can not annotate functions

• Expressions occurring in function annotations can only refer to the
functions parameters. Expressions in loop invariants and assertions
can also use other local variables in whose scope they occur. Variables
in @ensures clauses cannot be assigned to in the body of the function
they annotate.

15-122 SPRING 2011 JANUARY 9, 2015

Reference C0.24

17 Updates

Jan 30 2011. A stand-alone semicolon ’;’ is now flagged as an error rather
than interpreted as an empty statement. Remember that conditionals,
loops, and blocks are not terminated by a semicolon. Use an empty
block {} as a statement with no effect.

Dec 8 2012. Added the error statement to the language and clarified that
returning a non-zero integer from main does not signal unsuccessful
execution to the operating system, though running the error state-
ment does.

Dec 18 2012. Left and right shift operations now require their second operand
k to be in the range 0 ≤ k < 32. Otherwise, an arithmetic exception is
raised.

Dec 22 2012. #use directives must precede all other declarations.

Dec 22 2012. Statement blocks may end in annotations.

Dec 27 2012. Conditional expressions must have small type.

Dec 27 2012. Documented purity checking.

Sep 1 2013. Moved break and continue from C0 to an extended language
standard C1. They remain reserved keywords in C0.

Aug 21 2014. Removed support for \old(e) in contracts, specifically @ensures

clauses.

Aug 21 2014. Added generic pointers (void*) and function pointers to C1
to permit generic implementations of data structures.

15-122 SPRING 2011 JANUARY 9, 2015

	Introduction
	Types
	Integers
	Booleans
	Functions
	Commands
	Assignments
	Expressions as Statements
	Conditionals
	Loops
	Blocks
	Returns
	Assertions
	Errors

	Characters
	Strings
	Arrays
	Pointers
	Structs
	Compiler Directives
	Contracts
	Function Contracts
	Loop Invariants
	Assertions
	Purity

	Grammar
	Lexical tokens
	Grammar
	Annotations

	C1 Language Extension
	Advanced Control Constructs
	Generic Pointers
	Function Pointers

	Static Semantics Reference
	Updates

